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CHAPTER 1

Introduction

Induction machine learningapproximative reasoningnddata mining These are the
main topics of this work. Nowadays we witness high research interest in these areas due
to advances in the technology and the IT industry. Especially the field of the Data Mining
is in the research focus of big IT companies, because it represents the area of possible
revenues in the business world.

In the meantime, data about various aspects of people and the nature are stored in
huge data stores and data warehouses. Few years ago these were only sources of concrete
informations, but now, there's a need for powerful tools for analysis of these the data
to mine additional implicit information content. For example statistical correlations can
be extracted from huge collections of data. Such knowledge seems to be important in
various fields, like marketing, planning, sociology, etc. Process of retrieving these nuggets
of the knowledge is called tHenowledge discovery from databasaérious methods of
induction are used in this field. Usually a mix of statistical methods and fast database
handling algorithms.

Nice results in the field of induction and machine learning were achieved by usage
of neural networks and genetic programming. We agree V@t 0Q, that these are, so
called,blind processes. Such techniques are non-transparent. In papers by Mannila and
Muggleton (Mug 00], [JIMW 96] and [Man 97b]) we found serious basis for the sym-
bolic approach to the induction and the data mining. On the ground of these methods
we developed our own approach to data mining which was strongly inspired by methods
described by Muggleton in hiStochastic Logic Programmingvhat is an approximative
approach to the problem of induction.

In this work we describédMLP (Data Mining Logic Programming Despite the
splendid name, we did our best to define simple and clear syntax and semantics for a
kind of logic programming language. Without an ambition to develop an important result
in the field of data mining, we believe that this work can offer interesting view on using
logic programming for data mining from relational databases.

The text is organised as follows. The chaptePr2liminariesdiscusses basics of
different kinds of logic programming and few basic definitions used in the core of this
work. Basics of Logic Programming, Inductive Logic Programming and Stochastic Logic
Programming are introduced in the first half of this chapter. In the second part basics
of Data Mining and Knowledge Discovery in Databases. Condensed representations and
Inductive Databases are discussed here, because approach to these two topics are primary
interrests of this work.
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The third chapteData Mining Logic Programss the core part of this work. In this
chapter we define the syntax and the semantics of DMLP programs. It is supplemented by
simple examples which demonstrate crucial ideas behind the text. It is written mainly as
the set of definitions with few theorems and notes.

The chapter number Algorithms of DMLP inductiordiscusses the problem of in-
duction over relational database and basic algorithms of induction of DMLP programs are
introduced and their advantages and disadvantages are discussed here along with estima-
tions of their complexities.

The fifth chaptetsage of DMLRdeals with fields of possible usage of DMLP meth-
ods. The first section of this chapter discusses usage of DMLP programs as condensed
representations in inductive databases. This part of the chapter is serious. The second part
can be viewed as a speculation about other fields of usage of DMLP programs. It is just
inspiration for further work, but it is not crucial for this paper. Therefore please consider it
to be a not very serious part of this work.

Finally in the chapter €onclusionsve summarise this work and few open problems
along with the inspiration for further work.

The last parts of this work i§lossary of used abbreviations and symbatsl the
bibliography. We just add that in the bibliography we cite only materials referenced in
this work. For informative bibliography about research areas relative to this work we
recommend to se&ug 00], [Man 97b], [Sef 00 and Mug -].

Reader who is familiar with basics of Inductive and Stochastic Logic Programming
and Data Mining problems should skip directly to chapter 3 and do not read speculative
part of chapter 5.

Sometimes the way of using capital letters at the beginning of names of well known
methods may seem quite confusive. We use lower case first letters when we want to speak
about the method in general (like mining the nuggets of knowledge from the database will
be calleddata mining and upper case first letters are used when we are speaking in the
name of the method)ata Miningis the research field).

Finally we want to note that we did our best in usage of symbols and abbreviations in
the same way as authors of papers, which are basic for this work, do. We hope that by this
we make reading of this work easier.



CHAPTER 2

Preliminaries

Before we start with core topics of this work, we will need an introduction to areas
which influence this work or on which topics discussed in the next chapters have some
influence. These are theories of Logic Programming and Stochastic Logic Programming
which are fundamental for understanding later results and we will provide an introduction
to Knowledge Discovery in Databases and Data Mining.

2.1. Normal and Stochastic Logic Programs

Logic can be used as a programming languagghis is the fundamental idea be-
hind logic programming formulated in 1972 by Kowalski and Colmeraurer (according to
[Llo 87]). It means that logic, usually used by mathematicians can quite easily be used
as a powerful and expressive programming language for many areas where other for-
malisms fail. In previous decades we withessed many theoretical and practical results
in the field of Logic Programming which is merely fulfilling the fundamental idea given
above. The best known and the most reputable language based on logic is PROLOG (PRO-
gramming in LOGic), which has many clones such as Quintus PROLOG, micro-PROLOG,
NU-PROLOG and many others.

In the next subsections we will shortly introduce syntax and semantics of logic pro-
grams, introduce version of Logic Programming used for induction from sets of examples
(called Inductive Logic Programming) and finally familiarize with Stochastic Logic Pro-
gramming, which is one of the fundamentals for our further work.

2.1.1. Logic Programming. In the following text we will briefly summarize syn-
tax and semantics of logic programs and introduce standard terminology used in the next
chapter which is the core part of the work. The next text will be extracted and reused from
[Mug 00], because it fits our needs.

Syntax.Usually variable is denoted by a lower case letterz, y, z. Predicate and
function symbols are denoted by lower case lettersand f, g, h. Termcan be a variable
or a function symbol immediately followed by a bracketeduple of terms. Term with
function symbol and no tuple as an argument is catledstantand is written without
brackets. Thug(g(x), h) is a term whenevef andg are function symbols; is a variable
andh is a constant.

A predicate symbol immediately followed by a brackettetuple of terms is called
anatomic formulaalso called amtom Atom can be negative, or positive. Negative atoms
are prefixed by negation symbel. Both a and—a areliterals, whenevera is an atom.
From that we have also positive and negative literals.

7
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Finite set of literals treated as a universally quantified disjunction is calldduse
Horn clausds a clause containing at most one positive literal and it is said tiebgiteif it
contains exactly one positive literal. Definite clause for which all the variables in the head
appear at least once in the body is caltadge restricted For simplicity we use notation
Ay,..., A «— By,..., B, forexpressiovzy,...,Ves(A1 V- -VARV-B1V---VB,),
which denotes clause. Set of literals on the left side of the implication is calleuet:
and set of literals on the right side is called thedly. Clause with an empty head is called
agoal This is a standard convention in the field of Logic Programming.

Finite set of clauses is calledctausal theoryand is treated as a conjunction of those
clauses. Literals, clauses, clausal theories &nck and False are calledvell-formed for-
mulas A well-formed formula is said to bgroundif it contains no variablesHorn theory
is a clausal theory containing only definite claus@ange restricted definite prograisma
clausal theory in which all clauses are range restricted.

SemanticsLetd = {v; /t1,...,v,/t,} be aset of couples where eaghs a variable
and eacht; is a term and for no distinetandj is v; the same as;. Such a sef is called
substitution 6 is said to begroundwhen allt; are ground. Lef" be a well-formed formula
or a term and) be a substitution. Thef'd will be called aninstantiationof F' by 6 and
it is formed by replacing every occurence of variabjéy the termt;. By this, F'0 is an
instanceof well-formed formulaF'. We say that claus€' §-subsumeslauseD (written
asC = D) iff there exists a substitutiofisuch thatC C D.

A first order languagd. is a set of well-formed formulas which can be formed from a
fixed and finite set of predicate symbols, function symbols and variables. A set of ground
literals I is said to be ari-interpretation(or aninterpretatior) in case it contains either
or —a for each ground atomin L.

Let M be an interpretation and = h <— B be a definite clause ih. M is said to
be anL-model(or mode) of C iff for every ground instancé’ «+— B’ of C'in L, B C M
impliesh’ € M. M is a model of Horn theory’ whenever) is a model of each clause
of P. P is said to besatisfiableif it has at least one model anthsatisfiableotherwise.
Supposéd. is chosen to be the smallest first order language involving at least one constant,
a predicate symbol and a function symbol of Horn theBryIn this case interpretation
is called aHerbrand interpretationof P and the ground atomic subset bfis called a
Herbrand baseof P. I is called a Herbrand model of Horn theoRy when I is both
Herbrand and a model d?. According to Herbrand theorem it is satisfiable iff it has a
Herbrand model. Lef' andG be well-formed formulas. We say thatentailsG (we will
write F' = G), iff every model ofG is a model ofF.

Proof of Logic Program.An inference rulel = F — G states that a well-formed
formula F' can be rewritten by a well-formed formu{@. We write thatF' +; G iff there
exists a series of applications bivhich transform@' to G. I is said to besoundiff for each
F F; G always impliesF’ = G andcompletewhenF' = G always impliesF’ - G. I is
said to berefutation completé I is complete withG restricted toFalse. The substitution
6 is said to be theunifier of atomsa anda’ whenevered = o'6. u is themost general
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unifier of ¢ anda’ if and only if for all unifiers~ of a anda’ there exists a substitutian
such thatlap)d = a.

Theresolution inference rulés as follows.((C'\ {a}) U (D \ {—a’}))0 is said to be
aresolventof the clauseg’ and D wheneveiC' and D have no common variables,c C,
—a' € D and@ is the most general unifier afanda’. SupposeP is a definite program and
G is a goal. Resolution iBnear when D is restricted to clauses iR andC'is eitherG or
the resolvent of another linear resolution. The resolvent of such linear resolution is another
goal. Assuming that literals in clauses are ordered, a linear resolution is SLD when the
literal chosen to resolve on is the firstdh An SLD refutation fromP is a sequence of such
SLD linear resolutions , which can be represented’hy; = (G,C4,...,G,), where
eachC; is in P and the last resolvent is empty claudaufse). The answer substitution
isOpc = 010> ...0,, where eacld; is the substitution corresponding with the resolution
involving C; in Dp . If P is a range restricted definite prografhanda is a ground
atom, it can be shown thd = a by showing thaf{ P, «— a} Fs.p False. We say that
clausal theoryP is consistent iffP I/ False. Negation by failure inference rule says that
{P,— a} t/spp False impliesP Fg.pyF —a.

2.1.2. Inductive Logic Programming. This subsection is strongly inspired by chap-
ter Inductionin [Sef 0Q.

We can see Inductive Logic Programming as an approach to specify and solve prob-
lem of induction with using terms and tools of Logic Programming. When speaking about
induction we mean a process of generalisation from a set of some examples. By such
generalisation we construct a structure in which we will store information about these ex-
amples in general (i.e. there won't be recorded information about any particular example).
Because we want to use mechanisms of Logic Programming to approach problem of in-
duction, then the final structure which will be an output of an induction will be a logic
program.

Let us have a set @xamplesWe will denote it as\. We can divideA into two subsets
A =ATUA~. AT will be a set of positive examples (those which will be described by
final induced logic program) andd — will be the set of negative examples (i.e. those which
must not be described by an induced logic program). As it was said, the final product of
an induction has to be a logic program, or a set of hypothesis denoted by s$mBy
this induction we can repose on some background, or standard knowledge about examples
which is known to us before induction and may help with it. We will denote it by symbol
T.

Let A, T', ® be sets ofexpressions of languaieWe say that inductively follows
from A with background knowledgg iff

e NEA

e I'U A is consistent
e TUDEA

I' U @ is consistent
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Note that in our case all, A, ® are logic programs. If the first conditiol’ (= A) would

not be satisfied we have no reason to induce, becBumgficiently describes examples
from A. Condition of consistency dfUA says that examples frorh are not contradictive

to background theory (i.e. there’s no paradoxAnaccording tol'). Under condition

'y ® = A we mean that it is possible to deduce (infer) examglesom background
theoryI™ and induced logic program. Finally condition on consistency &fU ® says that
induced hypothesis cannot be trivial. It means that it may not be possible to infer anything
from ®.

In fact there can be many possible induced logic programs, these can even be in
contradiction with each other. This says that such induction is a non-monotonic process
([Sef 0Q).

Now we are prepared to proceed to the theory of Inductive Logic Programming. As
it was said above, we will use logic programs and techniques of Logic Programming to
approach problem of induction. Syntax of Inductive Logic Programming is the same as
syntax of usual logic programs. Therefore we can directly step to semantic specification
of Inductive Logic Programming.

DEFINITION. LetA = AT U A~ be sets of positive and negative examples. ILet
be a background theory aridbe a non-consistent set of clauses. Then we saylthsia
correct set of hypothesiff:

e TUAKEA

e TUDUA™ £ A
. F%A"—

° FU(I)':AJr.

This definition is equivalent to definition of the problem of induction above. We will
only note that negative examples can be seen as integrity constraints.

Generic algorithm.Generic algorithm 1 for problem of induction as it was given by
Muggleton and de Raedt iMuR 94] works as follows. We start from background theory
and positive examples. Then we induce final logic program step-by-step by using rules
of induction and advances from specific hyphotesis to more and more general ones. It is
well-advised to order the space of hypothesis according to the relation of generalisation and
specialisation. The whole computation is based on searching of the space of hypothesis.
Inference rules can extend the set of hypothesis. Pruning can be based on relations of
generalisation and specialisation. If positive examples do not follow from any hypothesis
H (and theonyt"), then they do not follow from any hypothesis more special tHan

Stop criteria can be implemented in many different ways. Given generic algorithm is
a generalisation of many possible strategies of computation of inductive generalisations.

Let us take a closer look to inference rules of induction. The simplest example of an
inductive inference rule i@-subsumption.

DEFINITION. LetC; andCy be clauses anél be a substitution. Then we can induc-
tively computeC, from C iff C10 C C5. We say that”; 6-subsumes€’s. We also say that
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Algorithm 1 Generic algorithm of induction (according iR 94])
input: set of inference rule®
output: set of hypothesi§) H

QH :=TUAT
repeat
takeH from QH
take inference rules frorR applicable onH
apply inference rules oH - let results of this step be hypothedis, ..., H,,
QH = (QH\ {H})U{H;,....H,}
pruneQH
until Q H satisfies stop criteria

C is moregeneralthanCy which is morespecialthanC. If there is a substitutiof for
which C16 C Cs, we will write C; < Cs.

In fact there are many approaches to Inductive Logic Programming based on these
generic ideas. We will not write more about them, they can be found in literature about
ILP (try references inNlug 00], [Sef 0Q or [MuR 94]).

2.1.3. Stochastic Logic Programs.Stochastic Logic Programs were introduced by
Stephen Muggleton iflug 96]. At first they were introduced as a way of lifting stochas-
tic grammars to the level of first order logic programs. Later they have been shown to be
a generalisation of Hidden Markov Models, stochastic context-free grammars and directed
Bayes’ nets. Next text will be an extraction and a compilation frdfag 00].

Syntax. Stochastic Logic Program is a set of labelled claug€s whereg is a proba-
bility (i.e. number in the rangp, 1]) andC is a first-order range restricted definite clause.
The subsef5, of clauses inS with predicate symbap in the head is calledefinition of
p. For each definitionS, the sum of probability labels, must be at most. S is said
to becompleteif 7, = 1 for each predicate symbgl andincompleteotherwise. P(S)
represents the definite logic program which we will have after removal of all probability
labels from stochastic logic prograt

Proof for SLP. A Stochastic SLD refutatiofcalled SSLD refutation) is a sequence
Dsc = (1:G,91:G1, ..., g.:Cy) in which G is a goal, eacly;:C; € S andDp(sy,¢ =
(G,Ch,...,Cy) is an SLD refutation fromP(S). SSLD refutation represents repeated
application of SSLD inference rule. This takes a ggalC' and a labelled clausg: C
and produces labelled gopy: R, whereR is the SLD resolvent off andC. The answer
probability of Dg ¢ is Q(Ds,) = [1i-, gi- The incomplete probability of any ground
atom a with respect toS is Q(a|S) < Pr(a|S) < 1, where Pr(a|S) represents the
conditional probability of: given S.

Semantics.On the ground of proof of Stochastic Logic Program we can introduce
semantics of SLPs. Supposss a first order language arfd, is a probability distribution
over the ground atoms qf in L. If I is a vector consisting of one sudh, for every
predicate symbagb € L thenlI is called adistributional L-interpretation If a € L is an
atom with predicate symbgland! is an interpretation thefi(a) is called probability of:
according taD,, in I.
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Supposé. is chosen to be the smallest first order language involving at least one con-
stant, a predicate and function symbols of Horn the®ty). In this case the interpretation
is called the distributional Herbrand interpretationsof

DEFINITION. An interpretationM is a distributionalL.-model of Stochastic Logic
Programs, iff Q(a|S) < M (a) for each ground ator in L.

Again, if M is a model ofS and M is Herbrand with respect t6 then M is a distri-
butional Herbrand model of.

Muggleton in Mug 00] describes methods of inducing such Stochastic Logic Pro-
grams from the set of examples and background theory. Still this theory is not developed
for use in the field of data mining. Few algorithms for induction of SLPs were imple-
mented within CProgol4.5, which is a version of Progol and that is a clon of PROLOG for
induction with use of logic programming.

Stochastic Logic Programs were shown to be useful and Muggleton used them in
computational chemistry and bioinformatics to define distributions for sampling within
Inductive Logic Programming.

2.2. Knowledge Discovery in Databases and Data Mining

Research field of Knowledge Discovery in Databases, often called Data Mining, re-
ceived a lot of attention in the last few years. This is because of a need of industry not only
to store and manage the data about various domains, but to use them as good as it gets.
Strong attention is dedicated to get interesting implicit information, which we are able to
calculate from the database, but these are not explicitly stored there. Usually mix of statis-
tics and computational tools and techniques is used. Data mining aims at the discovery of
useful information from large collections of data. This knowledge can be retrieved from
database in the form of rules describing properties of data, frequently occuring patterns or
clusters of objects, etc.

Here we will give a brief introduction to fundaments of data mining and process of
Knowledge Discovery in Databases. We will not go into deep results, because this research
field is quite wide.

2.2.1. The KDD process.As it was said above, the goal of knowledge discovery is
to obtain useful nuggets of knowledge from large collections of data. As it is obvious, such
task is inherently interactive and iterative. A user of KDD system has to have understanding
of the domain of the data in order to select the right subsets of data and good criteria
of estimation whether given discovered pattern is interesting enough or not. Because of
the fact that this knowledge can only hardly (if ever) be articulated and expressed by an
artificial system, KDD systems will usually be just semiautomatic tools.

Therefore knowledge discovery from large databases can be seen as a process contain-
ing several steps. We will give here steps which are formulatean[97b] by Heikki
Mannila. These are:

(1) understanding the domain
(2) preparing the data sets
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(3) discovering patterns (data mining step)
(4) postprocessing of discovered patterns, and finally
(5) putting the result into use.

As Mannila claims, the KDD process is neccessarily iterative. The results of data mining
steps can show that some changes should be made to data set formation step, postprocess-
ing of patterns can cause user to look for some slightly modified types of patterns, etc. One
of the important research topics in KDD is an efficient support of such iterations.

Output patterns.Above, we mentioned that the task of knowledge discovery, or data
mining is to find frequent patterns occuring in the dataset of our interrest. Now we have to
explain what we mean under suictteresting patternsThe character of a frequent pattern
depends on the application domain of our data mining task.

In [Man 97b], Mannila discusses few basic instances of data mining problem and for
each of them we have different type of frequent pattern occuring in the dataset. We will
give here a brief overview of two most important ones (as it seems to us).

Given a schem® = {A;,..., A,} of attributes with domair{0, 1}, and a relation
r over R, then an association rule abauts an expression of the forlX = B, where
X C BandB € R\ X. The intuitive meaning of the rule is that if a row of the matrix
r hasl in each column ofX, then the row tends to havelaalso in columnB. Given
W C R, we denote by (W, r) the frequencyof W in r: the fraction of rows of- that
havel in each column of¥/. The frequencyof the rule X = B in r is defined to be
s(X U{B},r), and theconfidencef the rule is%.

In the discovery of association rules, the task is to find all ridfes> B such that the
frequency of the rule is at least a given tresheldnd the confidence of the rule is at least
another treshold.

As Mannila claims (together with the rest of DM authors), in large retailing applica-
tions the number of rows might d®°, or even102, and the number of columns around
5000. The frequency treshold is typically aroundi0—2 — 10~%. The confidence treshold
6 can be anything frorfi to 1. From large databases one can obtain hundreds of thousands
of association rules.

Generic algorithms for search for appropriate association rules are based on the idea of
frequent sets, wherfeequent sets a subseX’ C R for which we have that(X,r) > o.

Once all frequent sets of dataseare known, finding the association rules is a straight-
forward task. We only need to verify whether confidence of each rule that is possible to
construct from given frequent set is sufficiently high.

Second instance of data mining problem discussed in this work, will be finding episodes
from event sequences. Let us consider a sequence of events with timestamps of their oc-
curence. As Mannila inNlan 97b] claims, such data are routinely collected usually in
industry, telecommunication networks, process monitoring, epidemiology, etc.

Let us have the a set of all event types. éisodes a partially ordered set of events.

An episode might be for example a structure representing the statement that4earnts
B occur before an event of tygge.
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Algorithms that search for frequent episodes are based on locating episodesiof size
at first, then use them to generate episodes ofxsaed so on.

In this work we will pay special attention to the first instance of data mining prob-
lem. We will consider only manipulations with association rules, because these are basic
patterns occuring in the relational database.

2.2.2. Data Mining as Selective Theory Extraction.Although the task of data min-
ing is a synonymum for knowledge discovery process we will treat it as a search for fre-
guent and interesting patterns in the large database. As Tomasz Imielindkyi 85|
noted, the situation in data mining can be compared to the status of database processing
in the 1960’s: one had to write a separate application program for each query. Effort to
develop a strong and sufficient theory in the background of data mining can be seen in
the last few years. There is a need for theory, which will be able to express KDD queries
and results of such computation. Steps towards this were takdMW[96]. Mannila in
this work proposes the use of probabilistic logic developed by BacchiBain 99. He
introduces simple theory based on arguing that
(1) the task of data mining can be seen as a problem of extracting the interesting part
of the logical theory of a model; and
(2) the theory of a model should be formulated in a logic which is able to express
quantitative knowledge and approximate tfuth

In the next paragraphs we will briefly introduce Mannila’s theory.

He considers a database over a single relation schema {A;,...,A,} of at-
tributes A;. Each attribute has a domain;. A database over R is a set of tuples
t = (t[A1],...,t[A4,]), whereVi : t[4;] € D;. Tuple relational calculus is constructed

from variabless, ¢ ranging over tuples in the database, constant symbols for every element
of D;, symbols for the functions and relations definedonand the attribute symbols
A1, ... Ap.

Terms are built simply by rules: every constant symbol for an elemet?;af a
term of sortD;. If o4, ..., 0, are terms and is anm-ary function symbol forD;, then
f(o1,...,0m,) is also a term of sorD;. If s is a variable and4; is an attribute symbol,
thens[A;] is a term of sorD;.

Atomic formulas are either of the forffi(o1, . . . , 0., ), Where eacla; is a term of sort
D; andT is anm-ary relational symbol oD;, or of the formo = T wheres andr are
terms of sortD;.

By closing the language defined so far under boolean connectiveasd—) and quan-
tification (3 andV) over the tuple variables one obtains the usual tuple relational calculus.

Afterwards this language is extended by constructs which allow it to express state-
ments about approximate truth of formulas. In factesror termis defined as either a
constant symbol; of some domair@ (e.g. @ = RN [0, 1]), or an expression of the form
G(x(s)[v(s)), wherex(s) andi(s) are formulas in tuple relational calculus whose free
variables are among= (s, ..., S)-

lUnder the ternmodelwe mean model of logical theory.
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An atomic formulais any expression of the form < § orn = §, with error terms;
andJ. The final representation language is obtained by closing the union of tuple relational
calculus and the set of atomic error formulas under boolean connectives and quantification.
We will give an example of an expressions written in this language and discuss their ad-
vantages and disadvantages later.

For an example of such expression let us have relational scligmsat of columns
(attributes).X, attribute B and treshold values for frequeneyand confidencé. Then a
formula

GBI =1 A\ (Al =1)) =0
Aex
means that the association rife=- B has confidenc@. Similarly the formula

AeX

represents the fact that the rite= B has frequency?.

Semantics of such rules is defined throwgtor measuresintuition behind this term
is that an error measure represents a “degree of falsity’gi¥en thaty is true.

Mannila defines an error measure #in [JMW 96] as any functiory which assigns
to every triple(r, x(s), ¥ (s)), wherer is a database ovét andy(s) andy(s) are formulas
of tuple relational calculus, a valyec R N [0, 1] such that

(D) g(r,x(s),9(s)) = 0if r = ¢(s) — x(s), andr |= 3s : Y(s)
(2) g(r,x(s),9(s)) = 1if r |= As : (s)
(3) g(r x(s),¢(s)) < g(r,X(s), ¥'(s)), if |= 1b(s) = ¢’ (s) and|= X' (s) — x(s).
Given an error measurg the semantics of an error ter@ x(s)|¢(s)) in r is the value
g(r, x(s),¥(s)) and the relatiom |=, ¢ is straightforwardly defined.
As it is obvious, many functions will meet requirements on error measure, even those
which have quite bad properties. Mannila does not take these “bad” functions into account.
Generic data mining algorithmin the next part we show the generic data mining
algorithm for finding all frequent patterns (in general meaning of pattern). This algorithm
(although naive) can be adapted to instances of data mining problem described above.
We will not discuss algorithm 2 more, because we will adapt this algorithm for our
purposes later and it will be sufficiently discussed in chapter 4.

2.2.3. Condensed represenationdAs it was said above, data mining is an iterative
process. Outputs of one data mining step usually influence inputs into the second one. As
an implication of that we can find out that similar data mining queries have to be evaluated
many times. This is quite inefficient effect. This gives rise to the concepboflensed
representationThere are two issues, which are solved by this concept.

The first is evaluation of similar queries faster than by looking at each of them indi-
vidually. Ideally this has to be possible in as few passes through the database as possible.

And the second problem is, how to evaluate queries from a query class without looking
at the whole data set.

2Note that an expression of the fol@( A| B) means conditional probability of given thatB holds.
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Algorithm 2 FFP - Finding all frequent patterns (as it is introduced by Mannila in
[Man 97h]).
Assume that there is an orderirgdefined between the patterns7f

C:={pePNgeP:p<q};
F =0
while C # @ do
for eachp € C do
find the number of occurencespfn r;
F = FU{p € C|pis sufficiently frequent in-};
C := {p € P| all ¢ € P with ¢ < p have been considered already and it is possi-
ble thatp is frequent;
end for
end while
OutputF;

From the above mentioned it follows that if we have a class of strucfires data
collectionr € D, and a class of patterri3, acondensed representatidor » andP is a
data structure that makes it possible to answer queries of the'féom many times does
p € P occur in the database?” approximately correctly and more efficiently than by
looking at the databaseitself.

In literature, one can find the following simple example of a structure fulfilling require-
ments on condensed representation: a sample from the data set. By counting occurencies
of given pattern in the sample one gets an approximation of number of occurencies in the
original data set.

Few other examples were given and studied in literature. Still, according to our knowl-
edge, none of them was good enough to be widely agreed upon as a good approach to this
problem. Primary aim of this work is to propose a structure which seems to us to be a good
candidate on condensed representation.

2.2.4. Inductive databasesAccording to what was said above about KDD as an
iterative process, there is another aspect of this fact. User of an KDD system often wants
to cross the boundary between data and structures which were computed as an output of
previous data mining steps. For example, the user might want to view outputs of such KDD
process, select some of computed patterns, look at the exceptions of these patterns, form a
set of patterns describing these exceptions, etc. To make such moves between the data and
the output patterns Mannila proposes the following principle:

KDD queries have to satisfy closure property: the result of a KDD query should be an
object of a similar type than the arguments.

Relational databases satisfy this. Answers to SQL queries over relations are relations
again. These requirements partially motivate the terinddictive database

Framework ofinductive databaseigstroduced in Man 97b] and elsewhere in the DM
literature is focused on usage of association rules as an output of KDD query. The core
idea is based on the database consisting of the raw data and some more or less inductivelly
obtained rules. The terimductive databasshould be compared with the terdeduc-
tive database While deductive databases use simple form of deduction to augment fact
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databases to contain a potentially infinite set of derived or deduced facts, the goal of induc-
tive database is that in addition to the facts, the database will contain a potentially infinite
set of induced rules (or some form of more general information structure)

As Mannila claims in Man 97b], developing condensed representations for various
classes of paterns seems to be a promising way of implementing inductive databases and
more generally improving the effectiveness of data mining algorithms. Whether this ap-
proach is generally useful is still open.

2.2.5. Open problems.In the last years we can see fast development in the field of
data mining. As Agrawal mentioned iA§r 02], data mining showed a strong potential for
the future, still while this is a fast evolving research field, there are many open problems.
One of the most important open problems seems to be a development of a general theory
of data mining. Sometimes this is called the theory of inductive databases. This is tightly
connected with development and usage of the concept of condensed representations. This
work focuses on this research problem.

There are also other problems or issues concerning KDD systems and query languages.
Architecture of KDD systems, support of KDD process from the side of the database man-
agement systems, development of language suitable to express KDD queries, algorithmic
problems, etc. These are hot issues, what can be seen on talks on conferences and work-
shops about knowledge discovery and data mining.






CHAPTER 3

Data Mining Logic Programs

In the previous chapter we briefly described research fields which have influence on
this work or motivation for it. In the core of this work, which are chapters 3 and 4, we
will propose framework designed to solve some of the problems and issues mentioned
in the previous chapter. We will introduce original framework which aims to attack the
problem of condensed representations and through this also to influence the concept of
induction database. We will adapt mechanisms developed by Stephen Muggleton for Sto-
chastic Logic Programming and principles of logic programming to develop a structure
able to serve as a condensed representation.

3.1. Introduction

As it was introduced above, this chapter will introduce syntax and semantiestaf
Mining Logic Programg[DMLP). This kind of logic programs was strongly inspired by
Stephen Muggleton'Stochastic Logic Program@Mug 00]), which we saw as a good
example of probabilistic logic programs and wanted to use them (or to inspire ourselves) in
the field of data mining. This sort of logic programs was chosen because of its well defined
syntactic and semantic properties which we considered to be quite similar to requirements
of the language used in the data mining fieleMWW 96]).

In 3.1.1 we will introduce first steps to syntax and semantics of DMLP to help under-
stand sections 3.2 and 3.3, which contain the core of this work.

3.1.1. Elementary description of DMLP. We will define DMLP as a tool which can
help us to solve the following problem. Let us have the relational table over finite domains
(for simplicity we will use binary data) and we would like to construct an object which
describes the database as good as it gets. Afterwards we can “ask” about properties of the
database and we will be able to compute an answer with help of our description, without
looking into the database (i.e. answering algorithm does not need to walk through each row
of the database to compute an answer). Of course, such an object will not be any “oracle”.
It will be able to help us compute only appropriate type of questions. Our aim will be
to build such mechanism for questions relative to statistic properties of the database (e.g.
“How many percent of rows have valdein column A?"). As it was already mentioned,
we were strongly inspired by SLPs and on the basis of Logic Programming we built our
DMLP.

Data Mining Logic Program is a set of clauses labeled by probabilities with which
they hold in the given relational database. For simplicity, we will use clauses only with one
variable. From this we have that a clause will be able to express only the sentence about

19
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one row of the database. These clauses will be also restriced to express only sentences
about the database. This requirement leads us to use predicates with fixed arity.
Development of semantics of our logic programs will be strongly inspired by mecha-
nism of resolvence (widely described in literature about LP and introduced in the chapter
2). In fact, we will use very similar mechanism as Muggleton doe$/nd 00] to com-
pute distributional model of SLPs. For this purpose we will define an evaluation function,
which will be able to compute this distributional model from chain of clauses produced by
SLD refutation (for explanation se&&f 04, [Llo 87]).

3.2. Syntax

3.2.1. DMLP syntax.

DEFINITION 3.2.1. LetR = (A4,...,A,) be arelational schemaonsisting of at-
tributes named by symbolé;. Eachattribute A; is defined over finite domaif;. Data-
baser over the relational schemA is a set oftuplesz = (x[44],...,z[A,]), where
Vi : x[A;] € D;.

DEFINITION 3.2.2. Variable ranges only over tuples of the databa€anstant sym-
bols are defined for each element b Vi € 1...n and we define also special constant
symbols for real numbers frofR used adabels We definepredicate symbolt operate
only over tuples from the database (or variables).

NoOTE 3.2.3. In the next text we will use the following convention for denotation of
symbols in it. Variables will be denoted by lettersv, x, y, z. Constants will be denoted
by lettersa, b, ¢, predicates by letters, ¢q. Database will be denoted by character
relational schema b§ and real number constants hyAll symbols can be subscripted or
upper scripted. For indexes we will use symholg &, I, m, n. Clauses will be denoted by
upper case letters, D and sets of literals by upper case lettdrsB. Sets of clauses will
be denoted by upper case Greek letters. If these rules will be broken somewhere in the text
it will be explained immediately. Special functions will be denoted by special characters
ad hoc according to our needs.

DEFINITION 3.2.4. Letr be a database over a relational schdina (A4,..., A,)
of attributesA,, ..., A, over finite domaind, . .., D,, and letz be variable ranging over
the database.

Termsare built as follows:

e Every constant symbol for an elementf is a term of sorD; (these terms will
be calledground).

o If zis avariable, then[4,] is a term of sorD;.

We definewell-formed formulasnductively as follows:

e If pis an n-ary predicate symbol andg, . .., o, are terms thep(oy,...,0,)is
awell-formed formulgatomic formulaatom).

e If o1 andoy are terms of sorD; theno; = o5 is alsowell-formed formula
(atom), we call it alsobasic equality.
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e If F andG are formulas, then alsg-F), (F A G), (F Vv G) arewell-formed
formulas.

e Literal is an atom or negation of an atom.

e Well-formed formula is said to bgroundiff it contains no variables.

We defineclauseas a formula consisting of a finite set of literals connected by disjunction
of the formVzy,...,Vzs(Ly1 V---V Ly,), whereLq, ..., L, are literals and, . . .,z
are all variables occurring ih; V -+ -V L,,.

NoTe3.2.5. Asitis usual, we denote the clawssg, ..., Vo, (41 V- VAL, V-B1V
--V-B,)asA,..., Ay «— By,...,B,. We say that the left side of the clause is called
theheadand the right side is called thmdy All variables are assumed to be universally
guantified, commas in the body,, . . ., B,, denote conjunctions and commas in the head
Ay, ..., Ay denote disjunctions.

DEFINITION 3.2.6. Horn clausesare clauses containing at most most one positive
literal (at most one atom in the head)efinite clausds a clause containing exactly one
positive literal. A non-definite Horn clause is called@al. A definite clause for which all
the variables in the head appear at least once in the body is cafigd restricted We say
that a clause igecursiveiff the predicate, which occurs in the head of the clause, appears
also in the body of the clause.

NoTE 3.2.7. Definitions given above were already mentioned in the chapter 2. We
defined some of already known terms again to hold the definition of syntax of DMLP
consistent.

In the next text we will use onlgoalsandrange restricted definite clausegth one
variable.

NoOTE3.2.8. Set of clauses is treated as a conjunction of clauses (because well-formed
formulas are inductively closed on conjunction, disjunction and negation, we can say that
also a set of clauses is a well formed formula). We will use tienmula, instead of longer
well-formed formula

DEFINITION 3.2.9. Clause in the form @f:C, whereg € RN [0,1] andC is a range
restricted definite clause or a goal, is call@BILP clause

DEFINITION 3.2.10. DMLP (Data Mining Logic Program® is a set of DMLP clauses
g:C, whereg is a value of the probability of Horn clause. The subsetS, of clauses
containing predicate symbplin the heads, is called tH2MLP definition ofp.

NoTE 3.2.11. Letp be the predicate symbol ardbe the DMLP program. We will
write p €4, ® when® contains the definition gf. This is a syntactic notation.

DEFINITION 3.2.12. We say thah = {p,(a) < |Va € r} is a set o0 DMLP examples
and the predicatg, used in such set is said to hesociatedvith the database. That is
the database expressed according to syntax of DMLP. We say thds associatedvith

r.
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NoTE 3.2.13. From this point on, wherever we will mention the set of DMLP exam-
plesA we mean that there exists a relational databaassociated witl\. It means that
the defitniion ofr will be omitted wherever it will be possible. This only serves to shorten
the text size.

DEFINITION 3.2.14. Let® be a DMLP program. LeF be a set of range restricted
definite clauses defined according to syntax rules given above. We sdy ih&MLP
background theory ob when for each predicate symbalp €4 ¢ = p €4 I' and
body of each claus€' € T" contains formula in the form of,.(z), wherep,. is the predicate
associated with the databasandz is a variable symbol used in the head of the clalise

Background theor¥y" will serve us as the set of definitions of predicates (tools) which
can be used to describe relational databasé/e will treat clauses of as if their body
does not contain member of the fopmn(z). We will implicitly assume that each clause of
I contains such formula.

As it was mentioned in 3.1.1, Data Mining Logic Progrémvill be that object which
will help us compute answers to questions about statistical properties of given database
Computation will run only over the prograd without using the database By this we
will be able to throw away the whole databasand manipulate only witkp.

ExXAMPLE 3.2.15. Syntax
Database:

B O R Bk
B P O O
O r O R

Set of DMLP exampled\ associated with:

pr((1,0,1)) «
pr((l,0,0)) —
pr((0,1,1)) <
pr((1,1,0)) «
DMLP background theor¥:
p1(x) — x[44] =
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3.3. Semantics

3.3.1. Probability function.

DEFINITION 3.3.1. Letf be a set of tuple§ = {v/o1,...,v,/0,}. 6 is called
substitutiorwhere each; is a variable and each is a tuple of terms and for no distinct
andj is v; the same as;.

Let ' be a formula, thei#'d is calledinstantiationof F' iff each occurrence of variable
v; in FO is replaced by the tuple of ground termsvi € 1,...,n (i.e. F'8 is the ground
formula).

Let S, be the definition of predicage thenS, 6 is instantiationof the definition of the
predicatep iff for each clause” € S, holds thatC'd is instantiation of formula’'.

DEFINITION 3.3.2. Letr be a databasé&,be a DMLP background theory arxibe the
set of DMLP examples associated withLet F' be a well-formed formula or a definition
of some predicate symbol aadbe a set of free variables i ranging over tuples of. By
notationF'(r,z) we mean set of all tuples € r for which exists instantiatiofi such, that
F0 is deductively satisfied iff U A (we writeT' U A | F6). If Fis an empty formula
thenF(r,z) = r.

In other words,F(r,z) = {a € r|303i : (z;/a) € O AT UA |E FOANT =
(1,...,2x)}. Therefore we writeF'(r, ) C r, or say thatF'(r, Z) is theselectionfrom
r according toF'. Because the definition of the predicatean be seen as a disjunction
of clauses, we can also say that DMLP clause, or the definition of the predicate (union of
selections) is theselectionfrom the database

NoTE 3.3.3. Note that in the definition of instantiation of formula, we say that each
variable is replaced by the tuple of ground terms and variables are syntactically constrained
to range only over tuples of some databas&imple corollary of this is that all predicates
which say something about the given databasee of the same fixed arity as tuples of
r. Also if we omit labels of DMLP clauses, we can see all predicates as definitions of
selections from the databasewhich defines partial ordering of selections and this allows
us to compare two relations of such kind by usage of inclusion operator.

Now we will define theprobability of clauses and definitions of predicate symbols.
In fact it will be somehow a complementary termeiwor measuradefined by Mannila in
[IMW 96].

DEFINITION 3.3.4. LetA, B be well-formed formulas an@y, T5 sets of free vari-
ables used in them, where the set of variahigsis distinct from the setz. Let G be
a function that assigns to every cougte C), wherer is a database over the relational
schemaR = (44,...,4,)andC = A «— B s a Horn clause, a valuge R N [0, 1] such
that:

(1) G(r,C) =0<= A(r,tA) N B(r,z5) =0
(2) G(r,C)=1<«= B(r,zp5) C A(r,Ta)
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(3) LetalsoC’ = A’ — B’ be a Horn clause. Then
TUA | (B« B'ANA — A')) = G(r,C) < G(r,C")}, wherel is a DMLP
background theory, and that is the same as
B'(r,7p7) = B(r,75) N A'(r,Tar) C A(r,72) = G(r,C) < G(r,C")
Let G be a function from the class of functions defined above. We say that ¢4lu€’)
is aprobability of clause” andG is aprobability function

NoTE 3.3.5. WhileF(r,z) = r, whereF is an empty formula ant is the set of
free variables inf" it comes out that iU = A «— B and B is an empty formula, then
C(r,Zz¢) = A(r,7Ta), wherezc andZ 4 are corresponding sets of free variables. This
works because each clauSecs I' contains formula in the form af, (x) in its body where
p, is a predicate symbol associated with Therefore it is excluded that there exists a
clauseC € T, which has an empty body.

Similar note holds when is an empty formula. However, it is quite devious to define
probability of a goal, while it would mean the probability of the question. Under the
probability of the question we mean the question on the probability of the fact given as a
goal. ThereforeZ(r,— B) = G(r, B). We will not use denotatiot(r, — B), we will
not even assign probability to goals.

In fact, the function’ is able to evaluate every selection from some given database
It is a measure of descriptive power of a selection according to

As it was mentioned above, the definition of probability functi@is somehow com-
plementary to the definition of an error measureJNIYV 96]. As Mannila claims, many
functions will meet requirements on probability of selection. Many times also those which
we consider bad for our purposes. However, we give an example of the probability func-
tion which is reasonable for our goals and we will use this function in the next parts of this
work. Therefore it will be noted by symbal, although it can be seen as an ambiguity.
Still we allow some other definitions of the functiéhfor other purposes.

DEeFINITION 3.3.6. Letr be a non-empty databasé,be a clause an@ s, 75 corre-
sponding sets of those free variables . |Bywe mean the number of rows of the database
T.

If C is holds the form of” = A «— B, whereA and B are non empty formulas then:

|ANB(rTZ UTE)| | -
G(r,C) = [A(rza)] if |A(r,za)| >0

If Cisaclause” = A <, whereA is a non empty formula then:

[A(rZa)|
G(r.C) = o if |r| >0
0 if |r]=0

As it is obvious, the result of the given functi@n represents the conditional proba-
bility of A A B assuming tha#l holds, when clause given as an input has non empty head

Iwhile given expression can be hard to read, please note that the operator of logical follewiag higher
priority thanu, <~ and— and these have higher priority that\V and finally—.
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and body. For clauses with an empty body it returns probabilit4 atcording ta-. As it
was said in the note 3.3.5, we do not define probability funafidior goals.

In fact, especially for clauses with an empty bo@yeturns the value which is similar
to confidenceof clauseC' in literature about data mining (e.gJNIW 96]). FunctionG
applied on DMLP clauses can also be interpreted as a function returning conditional prob-
ability under which some < r satisfies the body of the clause assuming that it satisfies its
head, or (for clauses with an empty body) probability under which the head of the clause
holds for some: € r.

NOTE 3.3.7. This definition allows us to speak about replacement of the head of the
clause by its body and to compute the probability with which the resulting clause holds.
This mechanism will be used in the next parts of this work, where we will define semantics
of an evaluation function.

We can extend functioty defined above in the definition 3.3.4 for selections in gen-
eral.

DEFINITION 3.3.8. Letr be a database artt) = {Ay «— By, A1 < B1,..., A, —
B, } be the definition of a predicate Let alsoz 4., 75,, - .-, %A, , TB, be sets of free vari-
ables corresponding to clauses frém Let A = (J;" ) A;(r,Za,) andB = J;_, Bi(r, T5,).
We define thegrobability of the selection by applying the definition of the functio@ on

sets4 and5. ANB]
N
G(r,S,;) =
Now we are able to define the relation of logical followigg; according to the func-
tion G straightforwardly.

DEFINITION 3.3.9. LetD = g¢:C be a DMLP clause(z be the probability function
andr be a database over a relational scheina

reqe D<= G(r,C)>g
Let ® be a DMLP program and ldb € ®. Now

rEq®<«=VDed:rk=qg D

NoTE 3.3.10. The previous definition says that the probability that the DMLP clause
D = g:C follows (we meariollowingin terms of the previous definition) from the database
ris at leasy.

3.3.2. Evaluation function. When we have already defined constraints and restric-
tions under which some DMLP program can be induced from the given datapase
will define model semantics for such DMLP programs and we will try to show that the
database can be a probabilistic model of such induced program. But at first we will need
some additional definitions which will help us with this approach.

DeFINITION 3.3.11. Letd be a database DMLP prograinpe a DMLP background
theory of®, A be a set of DMLP examples ariél =— p(a) be a goal, where is a tuple
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of ground terms ang € 4. I is a predicate symbol. Functiahis defined as follows
E(A,9,0)=¢q
whereq € RN [0, 1] is calledDMLP evaluation function.

Again, by the definition above, we defined the whole class of evaluation functions.
In general an evaluation function estimates the probability of any given goal according to
DMLP examples, DMLP background theory, and induced DMLP program.

As it was said for the probability functiof, many functions will meet requirements
on an evaluation function. As we did for an example of probability function, we give
an appropriate example on an evaluation function, which we will use in the rest of this
work. On the ground of proof of DMLP program, we will define instance of an evaluation
function which will be used later. It will work in the similar way as an SLD refutation. But
at first let us define a few additional terms.

NoTE3.3.12. Inthe next text we will use denotati®i®) for a logic program which
contains clauses of DMLP prograinwith labels removed.

DerINITION 3.3.13. Letl" be a background theory ar@ the probability function.
We say thaf ;.. is aDMLP background basethenT,;. = {G(r,C):C|VC € T} U
{G(r,C.):C, — |VC. €. '} where undet’. we understand all basic equalities contained
in the clauses of. Under the expressiofi, €. I" we understand that there exists a clause
C e T" which contains the basic equalify, in its body.

I'yase CONtains the union of DMLP clauses labeled by the functiband the set of
labeled basic equalities which can be foundlin As it is obvious,T';q.. is @ DMLP
program.

ExamMPLE 3.3.14. DMLP background bagg, . constructed according tq A and
I’ from example 3.2.15 on page 22:

0.75 : z[A1] =1+«
05 : z[As) =1«
05 : z[As] =0«
1.0 @ pi(z) —z[A] =1
0.33 @ pao(z) — x[A2) =1,2[A3] =0
1.0 ¢ po(x) —a[44] =1

DEeFINITION 3.3.15. DMSLD inference rulgéakes a goay,:C; and a labeled clause
g2:C> and produces a labeled goal ( g2):Cr, whereCy, is an SLD resolvent of’; and
C5. If there is no SLD resolvent for clausés andCs, there is no DMSLD resolvent of
them, too.

DEFINITION 3.3.16. Letd be a DMLP programl’;,s. be a DMLP background base
andC be a goalDMSLD refutatiorof the goalC' is the repeated application of the DMSLD
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inference rule in the same manner as the SLD refutation does. The DMSLD refutation can
be represented in the form of sequence of clauses, used to produce partial resolvents of the
whole refutation(1:C, g1:C1, ..., g»:Cy), whereC'is a goal and/1 < i < n: (g;:C;) €

D U T pese @and(C, C4,...,C,) is aan SLD refutation of’ from P(® Uy, ).

We are prepared to define an evaluation funcigron this basis. The definition of
it will be divided into three steps. In the definition 3.3.17 we will show how funcEgn
is able to estimate label of a simple goal with a constant, in the definition 3.3.21 we will
extend it to the estimation of labels of goals with a variable in them. Finally in the definition
3.3.23 we will extend function into its full power. We will show how it estimates labels for
whole clauses. As far as the definition of an estimation funcipis quite complicated
we give also few examples near definitions.

DEFINITION 3.3.17. Letr be a relational database over a relational schéina
(A1, As,...,A,), I be a DMLP background theors be a DMLP program an@’ =«
p(a) be a goal where €4,y I'anda € Ay x Ay x --- x A, is a tuple of terms. Let also
v = (1:C, g1:C4, ..., g,:Cp) be a sequence of DMLP clauses representing a DMSLD
refutation of the goal”. There can exist more than one such refutation, or even none.
Answer probability of an evaluation functi@, is the value:

ZU(AT,8,0) = maxy, ([]/_, g;) if there is some DMSLD refutation
e 0 if there is no DMSLD refutation fo€”

NoTE 3.3.18. The first member of the DMSLD refutation is the goal labeled by the
valuel. According to the note 3.2.5, in the body of the clause we have only negative
literals, which do not have to hold and therefore they have to have dabhile DMSLD
refutation is based on the proof by contradiction, where we start from negation of the goal,
we are allowed to start the refutation from the godl’.

This had to be done, because according to the note 3.3.5, the probability of the DMLP
goal is not defined.

ExampLE 3.3.19. DMSLD refutation and computation &f for goal with a con-
stant constructed according tp A andI" from example 3.2.15 anfl,,,. from example
3.3.14. For simplicity, we will use an empty DMLP prograbn It will not influence the
computation, while DMLP background baBg,,. is DMLP program too.

Let us have the goal- p»((1,1,0)). We can compute three DMSLD refutations for
it. These are shown in the next table.

H?:l ‘ v
0.0825 | 0.33:pa(x) «— z[A2] = 1,2[A3] =0; 0.5:x[A3] =0 «—; 0.5:x[As] =1 «
0.0825 | 0.33:pa(z) «— z[As] = 1,2[A3] =0; 0.5:z[As] =1 «—; 0.5:2[A3] =0 «

0.75 | 1.0:pa(z) «— x[A1] =1; 0.75:x[A1] =1 «
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In the first column, there is a value of product of labels used in the given refutation. In
the second column we show a chain of clauses used in each refutation. The final result of
the function=, for the goal— p2((1,1,0)) is

E1(A T, 0, p2((1,1,0))) = 0.75

Let us take a closer look into the definition Bf,.. It consists of a set of labeled
clauses constructed from a DMLP background thdognd a set of labeled basic equali-
ties. While these basic equalities are clauses with an empty body, the probability function
G treats them as if they have expressip(i) in the body, wherg,. is the predicate symbol
associated with a databasandz is the variable contained in the basic equality. Because
of this, the label of a basic equality can be seen as a proportion of a database which is cov-
ered by a selection defined by it. This is the property of all DMLP clauses with an empty
body.

Labels of clauses with non-empty body can be seen as a proportion of a part of a
database, where the head and the body hold in conjunction, to the size of the part of the
database in which only body of the clause holds. In other words, if we had two selections,
one defined as a part of the database where the body of the given clause holds and the
other as a part where the head and the body of the given clause hold together, label of
such clause would be the size of the second selection divided by the size of the part of the
database defined by the first selection. This is exactly what fun€tidaes.

Here we will care only about clauses with an empty body. One of good methods to es-
timate proportion of conjunction of basic equalities to the size of the whole database would
be a minimalistic approach. By this we mean calculation of minimal possible intersection
of segments of the database. Although we know the proportion of the database in which
the given member of the conjunction holds, we do not know exactly which part it is. We
only know its size. Of course, size of such intersection depends on particular parts of the
database (we need to know whether given row lies in the intersection of members of the
conjunction or not). Because we do not know this information, we can only guess the size
of such an intersection. From sizes of parts of the database where the given expressions
hold we can estimate the size of the least intersection where the conjunction of them must
hold (this can easily be zero). Again we do not know which part it is. We just know its
size.

NoOTE 3.3.20. We can estimate the label of the least intersection of two labeled se-
lectionsg; :S1 andgs: S, asmax(g1 + g2 — 1,0):(S1, S2). This equation can be extended
to tuple of selections. Let us have selectignsS,, .. ., g,:S,. Probability of their least
intersection can be estimated as

E1 (AT, ®, 8 A---AS,) =max((Y_gi) — (n—1),0)
=1
Itis easy to see thati : Z1 (A, T, 8,51 A---ASy) < g;.

DEFINITION 3.3.21. Let us have similar assumptions as in the definition 3.3.17. Let
C =< p(x) be a goal with a variable and a predicate symbgle 4., I'.
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For each DMSLD refutatioy = (1:C, g1:C1, . .., g»:Cy,) we can construct a set of
basic equalitiesy, = {gx:Cr|Fk : 1 < k < n A gp:Cy € 7}2, where eaclC}, is a
basic equality and the set consisting of the rest of the given DMSLD refutatien {g;:
Ci|A:1 <1< nAg:C; € v}, where eaclt’, is a clause with non empty head and body.
Conjunction of these basic equalities can be seen as a selection defining predivader

wy, =max(( Y gi) — (el = 1),0)

Vgi:Ci€ve
we understand proportion of the least intersection of selections defined by the basic equal-
ities from~,.
Answer probability of functiork, for such a goal will be

2/(AT.0.0) = { macs, ([c,cr, 90 07.) (D)
0 &)
The first equation holds when there exists some DMSLD refutation of the(@oal
Answer probability of=; is 0, when there is no DMSLD refutation of the given ga@al
Note that we used equation from the note 3.3.20 to compute the estimation of the least
intersection of basic equalities.

ExampLE 3.3.22. DMSLD refutation and computation &f for a goal with a vari-
able constructed according t9 A, andT’, from the example 3.2.15 ard,,;. from the
example 3.3.14. For simplicity, we will use again an empty DMLP progfamit will
not influence the computation, because DMLP backgroundlbasgis a DMLP program
too. Whole DMSLD refutations can be found in the example 3.3.19

Let us have the goal p2(x). We can compute three DMSLD refutations for it. These
are shown in the next table.

[1 ‘ Wy | Te ‘ Ve

0.0| 0.0]0.5:x[A3] =0« ; 0.5:x[A3] =1« | 0.33:pa(x) «— z[A3] = 1, x[As3]

0.0| 0.0]0.5:x[A3] =1« ; 0.5:x[A3] =0« | 0.33:pa(x) «— z[A3] = 1, x[As3]
0.75]| 0.75| 0.75:2[A1] = 1 « 1.0:pa(x) «— z[A1] =1

In the last two columns the table above shows parts of DMSLD refutations divided
into two groupsy. and~vz. The second column shows the valuewof and finally in the
first column there is the value of the prodd§{, ..., gi) - w+.

E1(AT, 0, pa(x)) = 0.75

Finally we will extend the functior® to be able to compute also labels of the whole
clauses.

DEFINITION 3.3.23. Let us have the same assumptions as in the definitions3.3.17 and
3.3.21. LetC = A — By,---, B, be arange restricted definite clause with a variable

2Although'y is not the set, we used expressignC), € . By that we mean that the given DMLP clause is one
of the members of;.
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and a predicate symbple 4. I'. Let us also have return values of the funct®nfor the
goals— A, By, ---,«< B,. We can compute the estimation of the label on the right
side of the clause by using the equation from the note 3.3.20 as

E1(AT,®, By A+ A By) =max(()_E1(A,T,®,« B;)) — (n—1),0)

i=1

Answer probability of the functio&, for such clause is

21 (AT, ®,C) =5, (AT,®,— A) - Z,(A,T,®,B, A+ A B,)

Just like after the definition of the probability functié® we decided to use general
notationG for the particular probability function. In the rest of this text we will use notation
= for functionZ=,, because it suits our needs.

Because the definition of the evaluation funct®may seem to be quite complicated
and foggy, we have to explain it. For simple goals, which are the goals with one predicate
symbol without any variables, the functi@hevaluates all possible deductive proofs of the
given ground atom and chooses the one which assigns the maximal conditional probability
to the goal. This is the conditional probability that if the given ground atom belongs to the
given database it holds in it as well, according to the given DMLP background base and
the DMLP program. Note thaE evaluates only those DMSLD refutations for the given
goal, for which all basic equalities appearing in the refutation hold.

For more complicated goals, which are those including a predicate with a variable, it
estimates the maximal probability that the given clause holds in the databaserding to
alternative definitions of the goal (i.e. conjunction definitions of predicates in the goal) in
DMLP background theory'. Because the only constructions, which define selections, are
basic equalities in DMLP background thedrythe definition of each member of the goal
consisting only of basic equalities must be built from them. This is done for each possible
proof (DMSLD refutation) of the given goal. At this point we can divide the refutation into
two parts. One is constructed by using clauses which only substitute members of the resol-
vent by other predicates, which have to be substituted in the next steps of refutation, and
the second part, consisting of basic equalities appearing in the definition of the selection
which is finally represented by the given goal. By computing the product of labels of the
first part of the refutation we compute the probability that the goal can be represented by
the conjunction of computed basic equalities and for the second part we have to compute
the proportion of the least part of the databasehich possibly can be described by these
basic equalities. We simply compute the least intersection of selections defined by them.
By multiplication of these two numbers we have the size of the minimal proportion of the
database which can be described by given goal. In other words, we have the probability
with which some tuple of atoms belongs to the datababé satisfies the given goal.

Finally, for the whole clauses, the functi@hestimates the value with which both the
body and the head of the clause hold in the database. This value represents an estimation
of the probability with which we can replace the head of the clause by its body. Although
this is a bold statement, we will prove it in the theorem 3.3.26.
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Note that the functio& estimates the least probability that atom holds without looking
into the database. By this we mean, that an algorithm for estimation of probability of a goal,
described in the definition of functids, does not need to use the database to compute the
probability of a given goal.

In the rest of this part of the text we will show what the relation betweemdG is.

At first we will prove lemma which will be used in the proof of the theorem 3.3.26.

LEMMA 3.3.24. LetI'y,,. be a DMLP background base constructed to sem and
. Let also® be a DMLP program. Let finally- p(a) be a goal with a constant. Then

2(A,T,®, — p(a)) < G(r,p(a))

PrRooOF We will use induction to prove the lemma above. We will show that for every
refutation of the goat p(a) value of the probability function, G(r, p(a)) is higher than
an estimation bye.

(1) If there is no refutation of— p(a), then=(A,T", @, p(a)) = 0. From this
simply follows that the lemma 3.3.24 holds.

(2) Let us assume that there is no clause, with the predicate sysribdhe head,
in ®. Then any refutationy of the goal— p(a) must contain a clause from
I'yase With the predicatep in its head. In fact it will be the first member of
the refutatiorry. From the definition 3.3.21 we see that the final result of the
evaluation functior is a product of labels of members (we mean members
which are clauses with non-empty head and body) of the refutation. Therefore
3gi:Cr € Tpase Which is the member of. From that we have tha}f[:‘:1 gi <
g,- Because for eachy;:C; € I'y,se We have thay; = G(r, C;), we can say that
Vy3kTT, g < G(r,Cy) what completes the proof in this step. (Although the
probability function is not defined for the go@l =— p(x), for simplicity we
use denotatioiiz(r, C) for the expressiol(r, p(z))).

(3) Now assume that there is already one clause with the predicate syritbits
head in®. Then there is a refutatiom which was chosen because it leads to
the maximal return value &. But this refutation must contain the claugeCy
from eitherT";,,. or ® which contains the predicatein its head.

(@) if gr:Cy is fromT'y,s. then the step 2 applies.

(b) if gi:Cy is from® theng;, < g;, whereg, is the label of a clause froiy, ..,
because according to the step 2, when computing the labg]. {6% some
clauseg;:C; € T'yqs had to be used.

(4) If there is more than one clause with the predigate the head, when we are
computing the label for the goal- p(a), then by recursive application of the
rules 2 and 3 we can state that lemma holds.

O

NoTE 3.3.25. Lemma 3.3.24 is applicable also to goals with a variable, but the proof
would be a bit complicated because of many math symbols in it. However, its skeleton
would be the same. Therefore we gave only simplier version of it.
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THEOREM 3.3.26. LetT';,,. be a DMLP background base constructed according to
somer, A andT'. Let also® be a DMLP program and”’ = A — B be a clause with
non-empty head and body. Then

2(A,T,®,C) < G(r,C)

ProoFr From the definition 3.3.23 we have tt&tA, T, ©,C) = E(A, T, @, — A) -
E(A,T,®,B; A --- A By,). From the lemma 3.3.24 we have tH&tA, T, &, — A) <
G(r,A) andVi : Z(A,T,®,— B;) < G(r,B;). Finally from the note 3.3.20 we can
see that'i : Z(AT® By A--- A B,) < Z(A,T,9, B;). ltis also easy to see thai :
% <1.

After this preparation the proof follows:

|A(r,Ta)| 1 |AAB(r,TAUTE)|
[r] <1< ‘A(TJTAH / 7]
_ o |AAB(rZzUTE)|

|[A(rza)| | [AAB(r,zaUTE)| 7]
7| |7 = \A(T‘-,J‘CT)\

|A(rZD)| | |ANB(r@aUTE)|  |AAB(raaUzE)|

I 7| [A(rza)l

From the definition 3.3.4 of the probability function and preparations at the beginning
of the proof, we finally conclude:

S(A,T,®,— A)-E(A,T, 8, AAB) < G(r, A) - G(r, AN B) < G(r, A — B)

This completes the proof. O

3.3.3. Semantics of DMLP.In this subsection we define distributiodainterpretation
and distributional.-model in the similar way as Muggleton does Mug 00] for SLPs.

DEFINITION 3.3.27. LetL be a first-order language ard, is a probability distri-
bution over ground atoms of the predicate symbah L. If I is a vector consisting of
one such distribution for every predicate sympot L, then[ is called adistributional
L-interpretation(or simplyinterpretatior).

If A € Lisan atom with the predicate symhoandI is an interpretation, theh( A)
is the probability ofA according taD,, in 1.

Let ® be a DMLP program. LeLg be the smallest first-order language involving at
least one constant and a predicate symbol of Horn th2¢®). In this case a distributional
Lg-interpretation is called distributional Herbrand interpretatiof ®.

Now we are finally prepared to define the distributional model of DMLP program.

DEFINITION 3.3.28. We say that an interpretatidn is adistributional L-model(or
simply mode) of the given DMLP® with a background theory' and a set of DMLP
examples), iff

Va € r: M(p(a)) > Z(A, T, P, p(a))

wherep is a predicate fronh® anda is a tuple of terms from a database



3.3. SEMANTICS 33

Let us take a closer look at the distributiodainterpretation defined by the probability
functionG. At first sight our intuition says that it will define the real probability of atoms
which hold in the database In the next definition we will define such interpretation.

DEFINITION 3.3.29. LetA be a set of DMLP examples associated with a relational
database andI’ be a DMLP background theory. We say tHat is a natural database
interpretationiff I is defined as follows:

Vp €ger I',Va € 12 Ig(p(a)) = G(r,p(a)) =1

Although the definition of such artificial interpretation, s surely is, seems to be
quite strange, it will be helpful in the next chapter, where we will define operators of DMLP
induction.

THEOREM 3.3.30. Let A be a set of DMLP examples associated with a relational
database- andT" be a DMLP background theory associated with a DMLP progaunif
a interpretationl; is the natural database interpretation of DMLP prograbrit is also a
distributional L-model of it.

PrROOFE From the definition of= we have that for every\, I", & and a goalC,
E(A,T,®,C) < 1. Requirements on the interpretatidp restrict only probability val-
ues of atoms containing tuples which belong to database Therefore we can say that
Vp €aer T,Va € r: 1 = Ig(p(a)) > Z(A,T,®,p(a)) > 0. From that we can easily
see thafl; is a distributional.-model of any® induced from the given databasend the
DMLP background theory'. O

NoTE 3.3.31. According to the theorem 3.3.30, we can say that any natural database
interpretation/; is anatural modelof a database.

DEFINITION 3.3.32. LetL be a language. Let € RN [0, 1] be a real value.L-
interpretationM is called are-tight distributional L-model(or simply ane-mode) iff

VAeL:0<Ig(A)— M(A) <e
where A is a ground atom containing only tuples of termbelonging to the given
database. The real value will be calledtightnessof the modelM .
If M is ane-model of® and M is Herbrand interpretation with respect®q then M
is ane-tight distributional Herbrand modedf ® (or simply Herbrande-mode).

DEFINITION 3.3.33. Let- be a databasé,be a DMLP background theory of a DMLP
program®. We say that distributional interpretatidg is anestimated interpretation @b
iff

Vp €gder I',Va € 72 Iz(p(a)) = E(A, T, ®,p(a))

NoTE 3.3.34. From the definition of distributiond-model and the estimated inter-
pretation of a DMLP progran® we simply have thalz is also a distributional.-model
of ®. Therefore we can say that is anestimated model cb.
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DerFINITION 3.3.35. Letr be a database arfidbe a DMLP background theory. Sup-
pose thatb,; and®, are DMLP programs constructed fromandI'. We will write that
®, == O, iff every distributionalL.-model of®, is also a distributional-model of ®,.

As we did in the definition of=z, we will write that®, =z . ®, iff every e-model of
®, is ane-model of®, too.



CHAPTER 4

Algorithms of DMLP induction

In this section we will propose and discuss algorithms and approaches to the DMLP
induction. At first we will speak more formally about a problem of a DMLP induction and
then we will propose different operators of DMLP induction.

4.1. Operators of DMLP induction

Now we are finally prepared to define the DMLP induction problem, what is the core
of this work.

DEFINITION 4.1.1. Letr be a databas& be a DMLP programl’ be a DMLP back-
ground theoryz= be the evaluation functioid; be the probability function ande RNJ0, 1]
be areal value. Let alsh; be a natural model of andI= be an estimated model &f.

Operatorind pyrp(r, T, E, G, €) is calledoperator of DMLP inductioriff

1) Indpyrp(r,I,2,G,e) = P
) rEc @
(3) Iz is ane-tight distributional L-model of ® (i.e. Vp €4 I',Va € 7 : 0 <
Ic(p(a)) — I=(p(a)) < e).
Search for appropriate DMLP prograbrby using some DMLP induction operatbtd pr, p
which will minimize the value of ¢ (p(a)) — I=(p(a)) for all a € r andp € 4¢; T will be
called theDMLP induction problem

NoOTE 4.1.2. Point 2 in the definition 4.1.1 is the most important component of this
definition, while it defines a characteristics of an induced DMLP program. Point 3 just
strengths this requirement.

Verifying, whether the given DMLP prograd in combination with the given DMLP
induction operatoind pysrp leads to are-tight estimated model ob, can be quite com-
putionally time-consuming task when we are working with a large database a large
DMLP background theory' (because of the enumeration of all atoms in the form(ef,
forall p €4 I' anda € r). From this reason we will also define weak DMLP induction
problem.

DEFINITION 4.1.3. Letr be a databas& be a DMLP programl’ be a DMLP back-
ground theory= be the evaluation function and finally létbe the probability function.
Operatorind 5% . (r, T, 2, G, €) is calledoperator of weak DMLP inductiofif
(1) Ind'esk o(r,T,2,G,e) = ®
() rEc @

35
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(3) I' is the DMLP background theory d@f

Search for an appropriate DMLP programby using some weak DMLP induction opera-
tor Ind'5%% - will be called theweak DMLP induction problem

NOTE 4.1.4. Point 3 in the definition 4.1.3 is unimportant, however it says us that
induced DMLP progran® cannot be just any DMLP program, but that it must be DMLP
program which uses only predicates defined in the DMLP background tivezmg that it
describes databasgbecause it uses DMLP background b&sg,. constructed from the
given set of DMLP exampleA associated with).

weak

4.1.1. Relation betweerG, =, Ind pyrp and Indpyy, p- AS it was sketched in the
text above a DMLP progran®, which is the final product of a DMLP induction, can be
seen as some kind of a description of the given databasthe functionG is able to
accurately label clauses of any DMLP program according to the databblmvever, this
can be quite time-consuming operation and in some applications of the DMLP induction
problem we do not need an accurate probability of a given formula. An estimation of
the probability of a formula can be sufficient for purposes of such application. For this
estimation we can use the evaluation functifyrwhich is also able to label any formula,
but there is a suspicion thatwill do that faster tharfz. Algorithm of = also does not need
to walk through the whole database

These facts are used by a DMLP induction operéta@ip ;... Although an operator
is rather more abstract notion, here we see it as an algorithm of construction of DMLP
program , model of which, estimated by an evaluation funclois as close as possible to
an ideal model, computed by the probability functi@n Still we do not restrict a DMLP
induction operator to be only such algorithm.

As it is obvious, in some cases it may not be possible to induce any non-trivial DMLP
program® from the givenr andI'. The quality of the induced DMLP program is repre-
sented by the tightness of an estimated model.

Although the definition ofind %% ., can seem to be quite meaningless, such operator
of the DMLP induction can be usefull in cases, where an application does not depend on
the quality of the induced DMLP program. In the next text we will show applications
where usage of such induction operator is appropriate.

4.1.2. General design of operator of the DMLP induction.At the first sight we
could divide our approaches into two groups. Those based on precise computation from
the database and the group of estimative strategies. This straightly offers us two algorithm
designs according to the ideas described in the section 3.3. We can base a precise comput-
ing approach on the usage of the probability functioand an estimative approach on the
evaluation functiorE. In next two subsections we will present our ideas for development
of an efficient algorithm of the DMLP induction.

If we start a top-down analysis of an operator of the DMLP induction, we can see it
as an entity consisting of two modules. The first module will generate candidates for new
rules and the second one will label them and decide whether the resulting DMLP clause
satisfies constraints imposed on an output of such operator.



4.1. OPERATORS OF DMLP INDUCTION 37

Both proposed algorithms will use similar skeleton for proposing most suitable candi-
dates for induced rules based on the search for frequently occuring patterns in the database
and for inducing final DMLP clauses from these frequent patterns. For this purpose we
will adapt generic data mining algorithm for finding all frequent sets, described in the lit-
erature (i.e. lan 97b]). At first we will describe the module for proposing candidates for
induced clauses and then we will discuss the second module for finalizing the work.

NoTE 4.1.5. While the conjunctiom is a commutative operation, in the next text
we will treat all conjunctions as sets. Therefore we will use expressiong’likg¢ A} for
simplicity.

Let us have a clasB of patterns or sentences that describe properties of the given data.
Under thepatternwe mean any sentence, an expression or a statement which says some-
thing about properties of the given data set. In our case we will use the syntax of DMLP
clauses to encode such patterns. The task can be described as a computation whether the
given pattern (clause) € P is frequent enough to produce an interresting rule. As Mannila
claims in Man 97b], generic data mining task is to find the set

PI(r,P) = {p € P|p occurs sufficiently often im andp is interesting,

wherePI is a set of all interesting and frequent patterns aigla database.

We will adapt this formalism for our purposes. ebe a relational database ahidbe
a DMLP background theory. As a class of all patterns describing properties of the database
r according to the DMLP background thedrywe will use the sef* of all expressions, in
the form of conjunction, which we can produce from expressions of the ¢y where
p €4¢r I andx is a variable ranging over tuples of databasé.et us assume, that there
exists a binary relatior, which defines partial ordering over the expressionk“of We
will view our task as the problem of finding the sentenceB*irthat are “sufficiently true”
in the data. At this step we will not care about other aspects of induced rules, which can
make them interesting enough to manipulate them later.

The algorithm 3 is based on the claim that if we find a frequent expressions, all of its
subexpressions must be frequent and vice versa.

In the algorithm 3, we use three sets of expressidhisited is the set of all expres-
sions which we have already consideréndidates is the set of possible candidates for
frequent patterns in the next step and findlheqPait is the set of frequent conjunctions,
already found. In this algorithm we start from atomic expressions, which are the heads of
selections defined ifv. The relation< is the relation of generalisation. As it is obvious,

(A < B) < (VC € B = C € A), whereA and B are conjunctions of atomic expres-
sionsC = p(x) € I'* in the first step of the algorithm 3 (i.& stands for a member of
such conjunction).

The only undefined symbol is the functidistimate o, (r, A). This is a function
of estimation of theéfrequencyof the given conjunctiomd. This is important difference
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Algorithm 3 DMLP FFC - Finding all frequent conjunctions (adaptation of FFP algorithm
from [Man 97h]).

Tested = ()
FreqPatt = ();
Candidates = {p(z)|p €qes T'};
while Candidates # () do
for eachA € Candidates do
if Estimate con;(r, A) > treshold then
FreqPatt = FreqPatt U {A}
else
Tested = Tested U {C € T*|C' < A};
end if
Candidates = Candidates \ {A}
Candidates = Candidates U {C € T*|C < ANC & Tested};
Tested = Tested U {A};
end for
end while

between our two proposals for an DMLP induction operator. We will discuss this function
more in subsections 4.1.3 and 4.1.4.

The algorithm 3 works simply. If it, during the computation, finds an expression which
is frequent enough (i.e. its estimation of the frequency by the fundiigimate cor; iS
high enough), it adds all the expressions, which are more special than the expression found
and it is subexpression of each of them, to the set of possible candidates for frequent
conjunctions. If the actually tested expression is not frequent enough, we have to exclude
all more specialised expressions from the future testing, because these have no more chance
to be frequent.

Now we are prepared to give a description of the second module which computes
clauses induced by an operator of DMLP induction.

Algorithm 4 DMLP CIR - computation of induced rules

=10
compute the sekreqPatt of all frequent conjunctions;
for eachC' € FreqPatt do
for each memben of the conjunctiorC do
Ca=(A—C\{4})
if Estimate, e (r,Ca) > treshold then
& = & U {Estimate,ye(r,Ca):Cal;
end if
end for
end for

We can see that the algorithm 4 is quite simple. It tries to create all possible range
restricted Horn clauses from all frequent conjunctions and computes an estimation of the
probability of such clauses. If the label is sufficiently high it adds such a clause to the
induced DMLP progran®. The only undefined symbol, alike above in the algorithm 3,
is an estimation functioistimate..,;.. The implementation of this function is again the
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main difference between our two proposals which we will discuss in the subsections 4.1.3
and 4.1.4.

As Mannila in Man 97b] claims, it is possible to modify the implementation of this
generic algorithm by usage of hill-climbing searches for the best conjunctions in the mod-
ule implemented by the algorithm 3. As it is obvious, the architecture of our generic
algorithm is very similar to the generic data mining system architecture. These facts will
be discussed later in the section 5.

Customization of the generic algorithms 3 and 4 lies in the customization of the first
estimation functionFstimate .on; (1, A), Which estimates the frequency of the given con-
junction A, and the second estimation functi@itimate . (r, C'), which estimates the
probability of the given clause (or the rul€). By implementing these two functions in
different ways we achieve two different algorithms with different complexity properties.
Please note that we use the definition of weak DMLP induction operator (we use the defi-
nition of weak induction operator defined in the definition 4.1.3).

NoTE 4.1.6. Generic algorithm constructed from algorithms 4 and 3 with functions
Estimate ;e and Estimate..n; unimplemented will be called thgeneric skeletof a
DMLP induction operator.

4.1.3. Precise approach using the probability functionG. In this subsection we
will define weak DMLP induction operatdndq(r,T', G, €).

DEFINITION 4.1.7. Letr be a relational databasg be a DMLP background theory,
G be the probability function and finallye RN [0, 1] be a treshold value. Let be a con-
junction of predicates defined ihandC be a range restricted definite clause constructed
from predicates defined .

We say that a DMLP induction operatdndq(r,T', G, ¢), which uses the generic
skeleton, igrecisewhen it implements estimation functions as follows

Estimate conj(r, A) = G(r, A)
Estimatepye (r,C) = G(r, C)

THEOREM4.1.8. Let & be a DMLP program induced by the precise operatod
andT" be its DMLP background theory. Then the operatoi ; is the weak DMLP induc-
tion operator.

PrRoOF Proof of this theorem is quite straightforward. We only need to check whether
each rule induced by the operathid ; satisfies requirements imposed on it by the defini-
tion of the weak DMLP induction operator.

The first and the third point of the definition are satisfied from the definition of operator
Inde. We only need to check the satisfaction of the second point of the definition 4.1.3
(i.e. whether |=¢ ®). From the definition 3.3.9 we have thal=¢ C < G(r,C) > g,
whereg:C € ¢ is a DMLP clause. But from the definition 4.1.7 of operatod we have
that this operator assigns to each clause Igbe! G(r, C), thereforeg = G(r,C) =
r =@ C. This completes the proof. O
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It is possible to implement the precise weak DMLP induction operator straightfor-
wardly by usage of the probability functia#, which we can implement as a query to the
database if it would be possible. Under additional strong restrictions on the syntax of a
DMLP program we are able to express these queries in SQL. This will be discussed later.

NOTE 4.1.9. The computation of such query can lead to the recursive computation,
therefore we have to additionaly constrain the form of clauses used as an input, or we can
restrict the form of the DMLP background thedry This note applies to the proposal in
the section 4.1.4, too.

Induction operator as we defined it in the definition 4.1.7 is as precise as possible ac-
cording to the given probability functio@'. It uses the computation from the database to
label an input clause. As Mannila claims Mgn 97b], naive implementations of such op-
erators can lead to slow operations for large databases. However, outputs of this approach
are precise and terminal. There is nothing to improve on them.

4.1.4. Estimative approach using the evaluation functio®. The Weak DMLP in-
duction operatoind=(r,T', Z, ¢), which uses the evaluation functi@h represents an es-
timative approach to a DMLP induction operator.

DEFINITION 4.1.10. Letr be a relational databasa, be the set of DMLP examples
associated withr, I" be a DMLP background theory of a DMLP prograin Let also=
be the evaluation function and be a conjunction of predicates definedlirand C' =
Chead — Chody b€ a range restricted definite clause constructed from predicates defined
inT.

We say that a DMLP induction operatdnd=(r,T", G, ¢), which uses the generic
skeleton, isestimativewhen it implements the estimation functions as follows

Estimate conj(r, A) = Z(A, T, @, A)
Estimate e (r,C) = Z(A, T, ®,C)

THEOREM4.1.11. Letr be a relational databasep be a DMLP program[ be its
DMLP background theory) be the set of DMLP examples associated wittmd finally=
be the DMLP evaluation function. Then the estimative operaidg is the weak DMLP
induction operator.

PROOF Again we only need to prove that=¢ @ if we label clauses i® by usage
of the estimative functiof. Proof of this straightforwardly follows from the proof of the
theorem 3.3.26 on the page 32. O

As it was already sketched in the subsection 4.1.1, the definition of the estimative
induction operatofndz is the main result of this chapter. In the theorem 4.1.11 we proved
that the simple induction operator which uses the estimative fungtias the core of its
computation is correct according to the definition of the simple induction operator. We
designed this operator with the aim to produce an efficient method for an induction of
DMLP programs. The estimative induction operator is not as precise as precise induction
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operators are, but we hope that under tight constraints on the syntax of DMLP programs
they can produce quite good DMLP programs.

Finally let us discuss the complexity of induction operators proposed in the subsec-
tions 4.1.3 and 4.1.4.

4.2. Complexity of Ind and Ind=

For the proper specification of a complexity of any of given induction operators, we
need to look into the generic algorithms of DMLP induction. These are the algorithm FFC
(3) for finding all frequent conjunctions, and the algorithm CIR (4) for the final computa-
tion of induced rules from these frequent conjunctions.

Both algorithms, FFC as well as CIR use functiditgimate .on; and Estimate rye.
Therefore we will at first analyze these functions.

In the case of the precise DMLP induction operated  both of these functions use
the probability functionG to compute a probability of the given clause or the conjunction.

If we treat the functionZ as an algorithm to compute this probability, we will find that

it needs to walk through the whole databasi find out for how many tuples, or rows,

the given expression holds. However, before this verification it needs to compute an SLD
refutation of the given expression in DMLP background theByywhat is some usuall

logic program, to find all basic equalities which it needs to verify in the database. We
need to compute an SLD refutation only fradhbecause in the DMLP background theory,
there is the only precise definition of each predicate used in any clause or a conjunction.
While the complexity of the computation of such SLD refutation strongly depends on the
syntactic constraints ofi, we will not even estimate it. We just have to note, that in the
case, when the given DMLP background theBrwill contain recursive clauses, or when

it allows recursive computation of the given logic program, it even may not be possible to
compute any SLD refutation. Therefore we strongly suggest to impose as strong syntacic
constraints on it, as it is possible. For example, it is well-advised to support only hierarchic
logic program$as DMLP background theory. It seems to suit all “normal” requirements
onT'. In this case, the computation of an SLD refutation frbronan be linear according

to the number of predicates definedIin We will denote it by the symbdl',,|. This is

the size of the sdf, = {p|p €4 I'}. We will use the symboDg,p for complexity of
computation of an SLD refutation frofin next paragraphs.

Now we can estimate the complexity of the probability functi®asO(OgsLp - |r|).

As itis obvious, if we restrict the form of a DMLP background theBryhe most important
element in the given expression will bé. Therefore we can say that the final complexity
of the probability functiorG is

Oc = O(|T'p| - |r])

When we speak about the estimative DMLP induction operatdg, which uses the
evaluation functiorE as the core of its calculation, we are in quite different position than in

1By this we mean programs without recursion. For more information on hierarchic logic programs refer to
[Llo 87] page 110.
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the case of the precise operator. This function does not need to walk through the database
to test every tuple in the databas&hether it belongs to the part of the database defined
by the given clause or not. It only needs to compute a DMSLD refutation figm U @,
wherel',,,. is the DMLP background base of an induced DMLP progdumJnlike the
computation by the functio, the evaluation functio® needs to compute an estimation

of the probability of the given expression from DMLP programs which are in this case
T'pase @and ®. The complexity of such computation is higher than the complexity of the
computation of an SLD refutation froin For computing any DMSLD refutation we need

to enumerate all SLD refutations of the given expression and find the one, which maximizes
its value of the probability. The most important element of this is the complexity of the
computation of an SLD refutation. Again we will not even estimate complexity of it. We
believe that under such strong syntactic constraints on a DMLP background theasy

the constraint of hierarchy is, it is possible to treat the complexity of the fungtias

Oz = O(c- [Iy|) = O(|T))

Now let us take a closer look on the generic algorithm FFC. As it is obvious, in the
worst case it has to walk through all members of thel'Sedf all expressions, in the form
of conjunction, which are possible to produce from expressions of the $orm where
p €qer I'. Size of the sel'™* is |[I'*| = n!. Therefore an estimation of the complexity is
in the worst cas®(n!). This is quite high value of complexity and shifts the algorithm
FFC into the class of algorithms with very high complexity. Even we can say that the FFC
problem is NP hard. In the worst case, there is no other way, than to enumerate all possible
candidates to frequent conjunctions, however we feel that in an average case it is not that
bad. We will not precisely estimate the complexity of the FFC algorithm, because it is not
crucial for this work. We believe that by usage of heuristics for particular application it is
possible to reduce the complexity of FFC. Even in some situations we can use user driven
(or semi-automatic) proposing of candidates for new DMLP rules, or frequent conjunctions
and by that reduce the complexity of FFC algorithm. We will discuss this topic later.

While the algorithm FFC uses the estimation functiéstimate .,,; we need to in-
volve also this function into our game. For each candidate for frequent conjunction we
need to compute the value @itimate,n;, therefore we can fix the complexity of FFC
algorithms of both DMLP induction operators on

OGpe = O(n!- Og) = O(n! - Ty| - |r]) | OFpe = O(n! - Os) = O(n! - |1y )

Inde \ Inds=

The algorithm CIR, is simpler than the FFC algorithm. It only computes for each fre-
guent conjunction its probability. We meet here with the estimation fundiigimate .,
what is again the function based on either the probability funation the case of precise
DMLP induction operators, or the evaluation functi&rin the case of an estimative ap-
proach to the DMLP induction. In fact the complexity of the CIR algorithm is depending
on the number of frequent conjunctions and their sizes. The maximal possible size of the
frequent conjunction is the same as the number of predicates defined in the given DMLP
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background theory'. It is equal to|T',|. Number of frequent conjunctions is at most
|T*| = n!l. However, in an average case this number will be much, much lower. Finally the
algorithm must use the estimation functidetimate ;. which depends on the complexity
either of the functiorGG, or =. Therefore final complexity of the CIR algorithm for both
DMLP induction operators will be:

Inde \ Ind=
0%z =O0(n! - |Tp2-|r|) \ 0% = O(n! - Ty[?)

In both operators we can use these specialised generic algorithms one after another or
we can integrate the CIR algorithm into the FFC algorithm. Although it will not change
the final complexity, by this we can speed up the whole process of the DMLP induction.

4.3. Hybrid approaches to DMLP induction

Likewise Mannila claims, naive implementations of generic algorithms usually leads
to slow operations. Therefore, as it was already said, it is necessary to search for an appro-
priate heuristics which will improve the efficiency of the DMLP induction. Here we will
give few naive proposals to improve it. We will not do more on this field, because it is not
the main aim of this work.

While the usage of the evaluation function for the estimafidfmate,.;. can pro-
duce quite inaccurate, or too low, probabilities of DMLP clauses in the DMLP program
®, we can try to mix both approaches to the DMLP induction to produce another DMLP
induction operator. We will call it the hybrid DMLP induction operator and denote it by
the symbolindz ¢ -

DEFINITION 4.3.1. Letr be a relational databasa, the set of DMLP examples as-
sociated with-, ® be a DMLP program with a DMLP background thedry Let alsoG
be the probability function ang@ be the evaluation function Let finall be a conjunction
of predicates defined il andC' = Cheaq — Croay b€ a range restricted definite clause
constructed from predicates definedin

We say that a DMLP induction operatdrd=,(r,T', G, €), which uses the generic
skeleton, iestimativewhen it implements the estimation functions as follows

Estimate conj(r, A) = Z(A, T, @, A)
Estimate, e (r,C) = G(A,T,®,C)
By mixing the probability functioriz and the evaluation functidg into the one DMLP
induction operator we have now an operator which produces DMLP programs with proba-
bilities of clauses as precise as possible, still for proposing new clauses runs on the ground

of the evaluation functio®. The complexity of this weak DMLP induction operator lies
somewhere between complexities of operafais; andnd=. We can say that

Omds < Omdz,e < Ondg
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Another approach to improve the efficiency and accuracy of DMLP induction operator
is to replace the FFC algorithm by an intervention of the user. If the user will propose new
clauses, or just frequent sets, the CIR algorithm will serve as an evaluator of such proposals.
By this we can produce, in some applications, the DMLP induction operator which will be
more efficient and more reliable in the process of DMLP induction.

Proof of the statement, that operatbrd= . is the correct weak DMLP induction
operator would be straightforward and would be based on the proof of the theorem 4.1.8.

4.4, e-tightness and DMLP induction

At the end of this chapter let us discuss the types of DMLP induction operators defined
in subsections 4.1.3 and 4.1.4. Please note that theorems 4.1.8 and 4.1.11 are formulated
only for weak DMLP induction operators. An ideal goal is to find an operator of DMLP
induction, which will use the evaluation functiGand the theorem abousitightness for
such an operator will be proved. Unfortunately we were not able to prove this theorem for
the precise induction operatdnd ; nor for the estimative operatdnd=. Even we doubt
whether it is possible. We suspect that some bad-looking result could be proven about
impossibility of proving such theorem. This is the reason why we defined strong version
of DMLP induction, but all our proposals for induction operators were based only on the
weak version of the DMLP induction operator.



CHAPTER 5

Usage of DMLP

We developed the theory of Data Mining Logic Programs with the primary aim to use
these programs as condensed representations. In the first sections of this chapter we will
discuss exactly this topic. In the next sections we will more speculate. These sections will
be quite informal and please treat them as such. However we feel that these speculations
are not too crazy and maybe topics discussed there could be inspiring for some kinds of
applications.

5.1. Condensed representations

As it was discussed in the subsection 2.2.5, one of the the biggest open issues in the
field of data mining is the topic of condensed representations. As it was already said,
condensed representation is a data object (structure) which represents the given underlying
database itself, describes it approximately good and the most important point is, that it
makes it possible to answer some probabilistic queries more efficiently than by looking
into the database.

Here we give Heikki Mannila’s definition of the condensed representation cited from
[Man 97b]:

DEFINITION 5.1.1. Given a data collectioh € D, and a class of patterri®, a con-
densed representation fdrand P is a data structure that makes it possible to answer
queries in the form ofHow many times doeg € P occur ind?” approximately correctly
and more efficiently than by looking dtitself.

We think that the Data Mining Logic Programs are suitable candidate for condensed
representations, because they describe the database according to some given DMLP back-
ground theonf", even it is possible to compute answers from DMLP programs to appro-
priate questions efficiently by using the evaluation funcion

In fact, a set of DMLP clauses can be viewed as a set of sentences of théltyipe:
head of the clause holds, then the probability that the body of it holds, too, is at most the
value of its label.” This allows us to chain such clauses into sequences (these are used in
DMSLD refutations) of resolvents, which say something likéthe first member of the
chain holds, then the probability that also the last member of it holds, too, is not greater
than the product of labels in the chain&s it is obvious, this probability for a single clause
is similar to the confidence of an association rule used in the data mining. Confidence can
be seen as the probability that the head of the clause holds when its body holds for sure.

The difference between these two terms is simple. In fact, both of them are conditional
probabilities, but they are complementary to each other. Let us have a €latsé — B.

45
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The confidence is represented by the conditional probatijtyf| B) and the probability of

the given DMLP clause i®(B|A). For the verification of this claim compare the equation
P(B|A) = Pgé%g) and the definition of probability of the DMLP clauéé/w.

Even from Bayes theoreR(B|A) = w we are able to express the confidence
from the probability of DMLP clause. Note that values of probabilitis3) and P(A)

are known in the process of computation of the label of the DMLP clause by the evaluation
function=.

Many times in the previous chapter (3) we mentioned that the induction of DMLP
programs with the evaluation functidhis probably more efficient than the induction of
DMLP programs by usage of the probability functi6h The main result is in the section
4.2 about the complexity of the DMLP induction operators. For clever implementations of
generic algorithms, the most time-consuming part of them would be the raw walk through
the database when we are using the probability funatioin the core of the algorithm.

With usage of the evaluation functi@) this element of the complexity can be reduced to
the minimum at the cost of loss of precision. Still, such DMLP program is able to help
in computation of the label of newly induced clause. This mechanism is described in the
definition 3.3.23 and proven that it works in the theorem 3.3.26. This is exactly the task
which has to be handled by condensed representations.

Note that such structures like condensed representations could be used to compress
the information in the database. Similar topic for Stochastic Logic Programs is discussed
by Muggleton in Mug 00].

For these reasons we afford us to propose DMLP programs as a suitable candidate for
condensed representations in data mining.

5.2. Probabilistic symbolic induction

As it was said in the introduction to this chapter, this section will be dedicated to an
informal discussion of other possible applications of DMLP programs. All of these propos-
als will have one thing common. While DMLP programs can be seen as generalisation of
logic programming, we can say that they are situated in the field of symbolic approaches to
artificial intelligence. Such approaches have advantage of possibility of translation of their
structures into the mathematical logic and then to the natural human language. Afterwards
we are able to articulate them. Subsymbolic approaches usually do not have this property.
This feature will be used in next discussions.

5.2.1. Extraction of rules from neural networks. Neural networks are biologically
inspired data structures and algorithms which allow us to simulate kind of neural activity
and by this help us to solve some non-trivial problems. We will not discuss in this work,
details and the theory can be found in many books (&1g.98]).

The main feature of neural networks is that we are able to learn them from examples.
If we have for each input of the training set also the output of it, we can force the neural
net to learn to compute for any similar input the same output. We can see neural networks
as a data structures which contgjeneralisationof the training set. Learning of neural
networks can be seen as the process of induction of this generalisation.
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Neural nets give us quite good results in many fields of their application. Still we
are not able to articulate, or explain why the net computed the result which it gave for
given input. We just know that it is approximately corect. Our idea is to use the induction
of DMLP programs for the same task, or in the task of extraction of rules from neural
network.

Let us have a simple neural network, which works as a clasifier of input data into
classes of outputs. For simplicity let input data be tuples over domiains. - , D,, and
output be a binary vector with the onlyin it. Let us have a relational databas&vhich
contains a training set as joined tuple of input columns and output part. If we have suitable
DMLP background theory’, which allows a DMLP induction operator and an induced
DMLP program to work with columns, then we are able to run an DMLP induction oper-
ator onr andI" to produce a DMLP progran®. This program will contain probabilistic
statements in the form of clauses from which we would be able to extract partial informa-
tion about probabilistic rules which hold in the network.

We can also set this idea on the top of its head by applicating it to some unknown
neural net. As it was already said, neural network can be seen as a black box which
somehowcomputes the result from the given input. Let us have some unknown neural
network and the task is to find the result computed by it as an output. Again we can
produce the set containing stochastic input data, let neural network compute the result for
each member of it and finally let us run DMLP induction over this set of examples. The
result of such induction will be some probabilistic description of relations between inputs
and outputs. This may help by further investigation of the given unknown neural network.

Because of its properties, DMLP induction seem to be suitable to solve many tasks
which are solved by neural networks, still while we did not develop any serious implemen-
tation of DMLP induction, we do not want to directly claim this. We only hope, that this
approach can help in these tasks. Please note that this is only informal speculation.

5.2.2. Hidden Markov Models. As Muggleton in Mug 00] claims, Stochastic Logic
Programs were introduced originally as a way of lifting stochastic grammars to the level
of first order Logic Programs. Later it was shown that SLPs can be used to represent also
Hidden Markov Models and undirected Bayes’ nets. While DMLP programs share many
properties with SLPs, which were the inspiration for it, we afford us to claim that DMLP
programs can be used in fields where Hidden Markov Models are used, too. Again, simi-
lary to neural networks, Hidden Markov Models are learned or constructed automatically
from a training set to produce intended results.

Hidden Markov Models were successfully used for example in the field of speech
recognition. Therefore we hope that DMLPs would have application in relative fields too.

Still note that this is only speculation, because, as we already mentioned above, there
is no implementation of any DMLP induction operator, even we doubt whether such appli-
cation will give something new in this field, or whether it will fasten some process. By the
given speculation we just wanted to show, another possible field of application of DMLP.






CHAPTER 6

Conclusions

In the core of this work we proposed a framework called DMLP. It was strongly in-
spired by Stochastic Logic Programs, but the goal was to develop a structure suitable to
serve as the condensed representation in inductive databases in the field of Data Mining to-
gether with the iterative mechanism of using these structures to induce more sophisticated
condensed representations. By this we can generalise that the main theme of this work is
usage of Logic Programming and approximative, or probabilistic reasoning in Data Min-
ing.

This work is only student diploma thesis and as such it probably contains many bugs
and has many limitations. Later we will discuss few open problems and directions of
possible further development. The main doubt is usefulness of this work. Our feeling is
that although this is an peripheral theme of the field of data mining, there are streams in the
research around KDD and DM which have similar background and attack similar problems
(especially works of Luc de Raedt, Heikki Mannila, Manfred Jaeger et al.).

6.1. Further development and open problems

Finally we give list of open topics raising from this work and possible further devel-
opments of it.

(1) Extend the DMLP theory to handle function symbols and more complicated do-
mains (not only binary tables).

(2) The theory of DMLP works only with single relational table (database). One of
simple extensions would be handling number of tables (databases).

(3) Revisions of DMLP programs can be interesting issue. If we would like to join
two inductive databases (raw data + DMLP representation of the database) we
need to join DMLP programs too.

(4) Develop theory and proove theorems about comprimation of the database by
inducing DMLP program. This probably will be lossy compresion and there is
a need to express the loss ratio (starting point should be Muggleton’s work on
U-learning in Mug -]).

6.2. Contributions

At the end, let us finally summarize main contributions of this work. As the main
result of this work we see the original framework for condensed representations in induc-
tive databases which is able to hold sentences in the specific clone of logic programming
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language suitable to express approximative and statistical properties of the given relational
database.



Glossary of used abbreviations and symbols

CIR - Computations of Induced Rules

DM - Data Mining

DMSLD - Data Mining SLD

DMLP - Data Mining Logic Program

FFC - Finding Frequent Conjunctions
FFP - Finding Frequent Patterns

LP - Logic Programming

KDD - Knowledge Discovery in Databases
SLD - Selection function Linear resolution for Definite clauses
SLP - Stochastic Logic Program

A - the set of DMLP examples

r - DMLP background theory

Ipase - DMLP background base

) - induced DMLP program

T - database (relational table)

R - the relational schema

= - evaluation function

G - probability function

Ind= - estimative DMLP induction operator
Indg - precise DMLP induction operator

Indz,; - hybrid DMLP induction operator
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