
COMENIUS UNIVERSITY

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

DEPARTMENT OFCOMPUTERSCIENCE

Peter Novák

Approximative Logic Programming for Data

Mining

Diploma Thesis

Thesis Advisor: Doc. PhDr. Ján Šefránek, CSc.

BRATISLAVA 2002

By this I declare that I wrote this diploma thesis by oneself, only with the help of the

referenced literature, under the careful supervision of my thesis advisor.

Bratislava, April 2002 Peter Novák

Approximative Logic Programming for Data Mining

Peter Novák, FMFI UK

E-mail address: novak@kopernik.cc.fmph.uniba.sk

FMFI UK, BRATISLAVA

Contents

Chapter 1. Introduction 5

Chapter 2. Preliminaries 7

2.1. Normal and Stochastic Logic Programs 7

2.2. Knowledge Discovery in Databases and Data Mining 12

Chapter 3. Data Mining Logic Programs 19

3.1. Introduction 19

3.2. Syntax 20

3.3. Semantics 23

Chapter 4. Algorithms of DMLP induction 35

4.1. Operators of DMLP induction 35

4.2. Complexity ofIndG andIndΞ 41

4.3. Hybrid approaches to DMLP induction 43

4.4. ε-tightness and DMLP induction 44

Chapter 5. Usage of DMLP 45

5.1. Condensed representations 45

5.2. Probabilistic symbolic induction 46

Chapter 6. Conclusions 49

6.1. Further development and open problems 49

6.2. Contributions 49

Glossary of used abbreviations and symbols 51

Bibliography 53

3

CHAPTER 1

Introduction

Induction, machine learning, approximative reasoninganddata mining. These are the

main topics of this work. Nowadays we witness high research interest in these areas due

to advances in the technology and the IT industry. Especially the field of the Data Mining

is in the research focus of big IT companies, because it represents the area of possible

revenues in the business world.

In the meantime, data about various aspects of people and the nature are stored in

huge data stores and data warehouses. Few years ago these were only sources of concrete

informations, but now, there’s a need for powerful tools for analysis of these the data

to mine additional implicit information content. For example statistical correlations can

be extracted from huge collections of data. Such knowledge seems to be important in

various fields, like marketing, planning, sociology, etc. Process of retrieving these nuggets

of the knowledge is called theknowledge discovery from databases. Various methods of

induction are used in this field. Usually a mix of statistical methods and fast database

handling algorithms.

Nice results in the field of induction and machine learning were achieved by usage

of neural networks and genetic programming. We agree with [Sef 00], that these are, so

called,blind processes. Such techniques are non-transparent. In papers by Mannila and

Muggleton ([Mug 00], [JMW 96] and [Man 97b]) we found serious basis for the sym-

bolic approach to the induction and the data mining. On the ground of these methods

we developed our own approach to data mining which was strongly inspired by methods

described by Muggleton in hisStochastic Logic Programming, what is an approximative

approach to the problem of induction.

In this work we describeDMLP (Data Mining Logic Programming). Despite the

splendid name, we did our best to define simple and clear syntax and semantics for a

kind of logic programming language. Without an ambition to develop an important result

in the field of data mining, we believe that this work can offer interesting view on using

logic programming for data mining from relational databases.

The text is organised as follows. The chapter 2Preliminariesdiscusses basics of

different kinds of logic programming and few basic definitions used in the core of this

work. Basics of Logic Programming, Inductive Logic Programming and Stochastic Logic

Programming are introduced in the first half of this chapter. In the second part basics

of Data Mining and Knowledge Discovery in Databases. Condensed representations and

Inductive Databases are discussed here, because approach to these two topics are primary

interrests of this work.

5

6 1. INTRODUCTION

The third chapterData Mining Logic Programsis the core part of this work. In this

chapter we define the syntax and the semantics of DMLP programs. It is supplemented by

simple examples which demonstrate crucial ideas behind the text. It is written mainly as

the set of definitions with few theorems and notes.

The chapter number 4Algorithms of DMLP inductiondiscusses the problem of in-

duction over relational database and basic algorithms of induction of DMLP programs are

introduced and their advantages and disadvantages are discussed here along with estima-

tions of their complexities.

The fifth chapterUsage of DMLPdeals with fields of possible usage of DMLP meth-

ods. The first section of this chapter discusses usage of DMLP programs as condensed

representations in inductive databases. This part of the chapter is serious. The second part

can be viewed as a speculation about other fields of usage of DMLP programs. It is just

inspiration for further work, but it is not crucial for this paper. Therefore please consider it

to be a not very serious part of this work.

Finally in the chapter 6Conclusionswe summarise this work and few open problems

along with the inspiration for further work.

The last parts of this work isGlossary of used abbreviations and symbolsand the

bibliography. We just add that in the bibliography we cite only materials referenced in

this work. For informative bibliography about research areas relative to this work we

recommend to see [Mug 00], [Man 97b], [Sef 00] and [Mug -].

Reader who is familiar with basics of Inductive and Stochastic Logic Programming

and Data Mining problems should skip directly to chapter 3 and do not read speculative

part of chapter 5.

Sometimes the way of using capital letters at the beginning of names of well known

methods may seem quite confusive. We use lower case first letters when we want to speak

about the method in general (like mining the nuggets of knowledge from the database will

be calleddata mining) and upper case first letters are used when we are speaking in the

name of the method (Data Mining is the research field).

Finally we want to note that we did our best in usage of symbols and abbreviations in

the same way as authors of papers, which are basic for this work, do. We hope that by this

we make reading of this work easier.

CHAPTER 2

Preliminaries

Before we start with core topics of this work, we will need an introduction to areas

which influence this work or on which topics discussed in the next chapters have some

influence. These are theories of Logic Programming and Stochastic Logic Programming

which are fundamental for understanding later results and we will provide an introduction

to Knowledge Discovery in Databases and Data Mining.

2.1. Normal and Stochastic Logic Programs

Logic can be used as a programming language.This is the fundamental idea be-

hind logic programming formulated in 1972 by Kowalski and Colmeraurer (according to

[Llo 87]). It means that logic, usually used by mathematicians can quite easily be used

as a powerful and expressive programming language for many areas where other for-

malisms fail. In previous decades we witnessed many theoretical and practical results

in the field of Logic Programming which is merely fulfilling the fundamental idea given

above. The best known and the most reputable language based on logic is PROLOG (PRO-

gramming in LOGic), which has many clones such as Quintus PROLOG, micro-PROLOG,

NU-PROLOG and many others.

In the next subsections we will shortly introduce syntax and semantics of logic pro-

grams, introduce version of Logic Programming used for induction from sets of examples

(called Inductive Logic Programming) and finally familiarize with Stochastic Logic Pro-

gramming, which is one of the fundamentals for our further work.

2.1.1. Logic Programming. In the following text we will briefly summarize syn-

tax and semantics of logic programs and introduce standard terminology used in the next

chapter which is the core part of the work. The next text will be extracted and reused from

[Mug 00], because it fits our needs.

Syntax.Usually variable is denoted by a lower case letterv, x, y, z. Predicate and

function symbols are denoted by lower case lettersp, q andf , g, h. Termcan be a variable

or a function symbol immediately followed by a bracketedn-tuple of terms. Term with

function symbol and no tuple as an argument is calledconstantand is written without

brackets. Thusf(g(x), h) is a term wheneverf andg are function symbols,x is a variable

andh is a constant.

A predicate symbol immediately followed by a brackettedn-tuple of terms is called

anatomic formula, also called anatom. Atom can be negative, or positive. Negative atoms

are prefixed by negation symbol¬. Both a and¬a are literals, whenevera is an atom.

From that we have also positive and negative literals.

7

8 2. PRELIMINARIES

Finite set of literals treated as a universally quantified disjunction is called aclause.

Horn clauseis a clause containing at most one positive literal and it is said to bedefiniteif it

contains exactly one positive literal. Definite clause for which all the variables in the head

appear at least once in the body is calledrange restricted. For simplicity we use notation

A1, . . . , Ak ← B1, . . . , Bn for expression∀x1, . . . ,∀xs(A1∨· · ·∨Ak∨¬B1∨· · ·∨¬Bn),
which denotes clause. Set of literals on the left side of the implication is called thehead

and set of literals on the right side is called thebody. Clause with an empty head is called

agoal. This is a standard convention in the field of Logic Programming.

Finite set of clauses is called aclausal theoryand is treated as a conjunction of those

clauses. Literals, clauses, clausal theories andTrue andFalse are calledwell-formed for-

mulas. A well-formed formula is said to begroundif it contains no variables.Horn theory

is a clausal theory containing only definite clauses.Range restricted definite programis a

clausal theory in which all clauses are range restricted.

Semantics.Let θ = {v1/t1, . . . , vn/tn} be a set of couples where eachvi is a variable

and eachti is a term and for no distincti andj is vi the same asvj . Such a setθ is called

substitution. θ is said to begroundwhen allti are ground. LetF be a well-formed formula

or a term andθ be a substitution. ThenFθ will be called aninstantiationof F by θ and

it is formed by replacing every occurence of variablevi by the termti. By this,Fθ is an

instanceof well-formed formulaF . We say that clauseC θ-subsumesclauseD (written

asC � D) iff there exists a substitutionθ such thatCθ ⊆ D.

A first order languageL is a set of well-formed formulas which can be formed from a

fixed and finite set of predicate symbols, function symbols and variables. A set of ground

literalsI is said to be anL-interpretation(or aninterpretation) in case it contains eithera

or¬a for each ground atoma in L.

Let M be an interpretation andC = h ← B be a definite clause inL. M is said to

be anL-model(or model) of C iff for every ground instanceh′ ← B′ of C in L, B′ ⊆M
impliesh′ ∈ M . M is a model of Horn theoryP wheneverM is a model of each clause

of P . P is said to besatisfiableif it has at least one model andunsatisfiableotherwise.

SupposeL is chosen to be the smallest first order language involving at least one constant,

a predicate symbol and a function symbol of Horn theoryP . In this case interpretation

is called aHerbrand interpretationof P and the ground atomic subset ofL is called a

Herbrand baseof P . I is called a Herbrand model of Horn theoryP when I is both

Herbrand and a model ofP . According to Herbrand theorem it is satisfiable iff it has a

Herbrand model. LetF andG be well-formed formulas. We say thatF entailsG (we will

write F |= G), iff every model ofG is a model ofF .

Proof of Logic Program.An inference ruleI = F → G states that a well-formed

formulaF can be rewritten by a well-formed formulaG. We write thatF `I G iff there

exists a series of applications ofI which transformF toG. I is said to besoundiff for each

F `I G always impliesF |= G andcompletewhenF |= G always impliesF ` G. I is

said to berefutation completeif I is complete withG restricted toFalse. The substitution

θ is said to be theunifier of atomsa anda′ wheneveraθ = a′θ. µ is themost general

2.1. NORMAL AND STOCHASTIC LOGIC PROGRAMS 9

unifier of a anda′ if and only if for all unifiersγ of a anda′ there exists a substitutionδ

such that(aµ)δ = aγ.

The resolution inference ruleis as follows.((C \ {a}) ∪ (D \ {¬a′}))θ is said to be

a resolventof the clausesC andD wheneverC andD have no common variables,a ∈ C,

¬a′ ∈ D andθ is the most general unifier ofa anda′. SupposeP is a definite program and

G is a goal. Resolution islinear whenD is restricted to clauses inP andC is eitherG or

the resolvent of another linear resolution. The resolvent of such linear resolution is another

goal. Assuming that literals in clauses are ordered, a linear resolution is SLD when the

literal chosen to resolve on is the first inC. An SLD refutation fromP is a sequence of such

SLD linear resolutions , which can be represented byDP.G = 〈G,C1, . . . , Gn〉, where

eachCi is in P and the last resolvent is empty clause (False). The answer substitution

is θP,G = θ1θ2 . . . θn, where eachθi is the substitution corresponding with the resolution

involving Ci in DP,G. If P is a range restricted definite programP anda is a ground

atom, it can be shown thatP |= a by showing that{P,← a} `SLD False. We say that

clausal theoryP is consistent iffP 6` False. Negation by failure inference rule says that

{P,← a} 6`SLD False impliesP `SLDNF ¬a.

2.1.2. Inductive Logic Programming. This subsection is strongly inspired by chap-

ter Inductionin [Sef 00].

We can see Inductive Logic Programming as an approach to specify and solve prob-

lem of induction with using terms and tools of Logic Programming. When speaking about

induction we mean a process of generalisation from a set of some examples. By such

generalisation we construct a structure in which we will store information about these ex-

amples in general (i.e. there won’t be recorded information about any particular example).

Because we want to use mechanisms of Logic Programming to approach problem of in-

duction, then the final structure which will be an output of an induction will be a logic

program.

Let us have a set ofexamples. We will denote it as∆. We can divide∆ into two subsets

∆ = ∆+ ∪∆−. ∆+ will be a set of positive examples (those which will be described by

final induced logic program) and∆− will be the set of negative examples (i.e. those which

must not be described by an induced logic program). As it was said, the final product of

an induction has to be a logic program, or a set of hypothesis denoted by symbolΦ. By

this induction we can repose on some background, or standard knowledge about examples

which is known to us before induction and may help with it. We will denote it by symbol

Γ.

Let ∆, Γ, Φ be sets ofexpressions of languageL. We say thatΦ inductively follows

from ∆ with background knowledgeΓ iff

• Γ 6|= ∆
• Γ ∪∆ is consistent

• Γ ∪ Φ |= ∆
• Γ ∪ Φ is consistent

10 2. PRELIMINARIES

Note that in our case allΓ, ∆, Φ are logic programs. If the first condition (Γ 6|= ∆) would

not be satisfied we have no reason to induce, becauseΓ sufficiently describes examples

from∆. Condition of consistency ofΓ∪∆ says that examples from∆ are not contradictive

to background theory (i.e. there’s no paradox in∆ according toΓ). Under condition

Γ ∪ Φ |= ∆ we mean that it is possible to deduce (infer) examples∆ from background

theoryΓ and induced logic programΦ. Finally condition on consistency ofΓ∪Φ says that

induced hypothesis cannot be trivial. It means that it may not be possible to infer anything

from Φ.

In fact there can be many possible induced logic programs, these can even be in

contradiction with each other. This says that such induction is a non-monotonic process

([Sef 00]).

Now we are prepared to proceed to the theory of Inductive Logic Programming. As

it was said above, we will use logic programs and techniques of Logic Programming to

approach problem of induction. Syntax of Inductive Logic Programming is the same as

syntax of usual logic programs. Therefore we can directly step to semantic specification

of Inductive Logic Programming.

DEFINITION. Let ∆ = ∆+ ∪ ∆− be sets of positive and negative examples. LetΓ
be a background theory andΛ be a non-consistent set of clauses. Then we say thatΦ is a

correct set of hypothesisiff:

• Γ ∪∆ 6|= Λ
• Γ ∪ Φ ∪∆− 6|= Λ
• Γ 6|= ∆+

• Γ ∪ Φ |= ∆+.

This definition is equivalent to definition of the problem of induction above. We will

only note that negative examples can be seen as integrity constraints.

Generic algorithm.Generic algorithm 1 for problem of induction as it was given by

Muggleton and de Raedt in [MuR 94] works as follows. We start from background theory

and positive examples. Then we induce final logic program step-by-step by using rules

of induction and advances from specific hyphotesis to more and more general ones. It is

well-advised to order the space of hypothesis according to the relation of generalisation and

specialisation. The whole computation is based on searching of the space of hypothesis.

Inference rules can extend the set of hypothesis. Pruning can be based on relations of

generalisation and specialisation. If positive examples do not follow from any hypothesis

H (and theoryΓ), then they do not follow from any hypothesis more special thanH.

Stop criteria can be implemented in many different ways. Given generic algorithm is

a generalisation of many possible strategies of computation of inductive generalisations.

Let us take a closer look to inference rules of induction. The simplest example of an

inductive inference rule isθ-subsumption.

DEFINITION. LetC1 andC2 be clauses andθ be a substitution. Then we can induc-

tively computeC1fromC2 iff C1θ ⊆ C2. We say thatC1 θ-subsumesC2. We also say that

2.1. NORMAL AND STOCHASTIC LOGIC PROGRAMS 11

Algorithm 1 Generic algorithm of induction (according to [MuR 94])
input: set of inference rulesR
output: set of hypothesisQH

QH := Γ ∪∆+

repeat
takeH fromQH
take inference rules fromR applicable onH
apply inference rules onH - let results of this step be hypothesisH1, . . . ,Hn

QH := (QH \ {H}) ∪ {H1, . . . ,Hn}
pruneQH

until QH satisfies stop criteria

C1 is moregeneralthanC2 which is morespecialthanC1. If there is a substitutionθ for

whichC1θ ⊆ C2, we will write C1 ≤ C2.

In fact there are many approaches to Inductive Logic Programming based on these

generic ideas. We will not write more about them, they can be found in literature about

ILP (try references in [Mug 00], [Sef 00] or [MuR 94]).

2.1.3. Stochastic Logic Programs.Stochastic Logic Programs were introduced by

Stephen Muggleton in [Mug 96]. At first they were introduced as a way of lifting stochas-

tic grammars to the level of first order logic programs. Later they have been shown to be

a generalisation of Hidden Markov Models, stochastic context-free grammars and directed

Bayes’ nets. Next text will be an extraction and a compilation from [Mug 00].

Syntax.Stochastic Logic Program is a set of labelled clausesg:C, whereg is a proba-

bility (i.e. number in the range[0, 1]) andC is a first-order range restricted definite clause.

The subsetSp of clauses inS with predicate symbolp in the head is calleddefinitionof

p. For each definitionSp the sum of probability labelsπp must be at most1. S is said

to becompleteif πp = 1 for each predicate symbolp and incompleteotherwise.P (S)
represents the definite logic program which we will have after removal of all probability

labels from stochastic logic programS.

Proof for SLP.A Stochastic SLD refutation(called SSLD refutation) is a sequence

DS,G = 〈1:G, g1:G1, . . . , gn:Cn〉 in whichG is a goal, eachgi:Ci ∈ S andDP (S),G =
〈G,C1, . . . , Cn〉 is an SLD refutation fromP (S). SSLD refutation represents repeated

application of SSLD inference rule. This takes a goalg : C and a labelled clauseq : C
and produces labelled goalpq:R, whereR is the SLD resolvent ofG andC. The answer

probability ofDS,G is Q(DS,G) =
∏n

i=1 gi. The incomplete probability of any ground

atom a with respect toS is Q(a|S) ≤ Pr(a|S) ≤ 1, wherePr(a|S) represents the

conditional probability ofa givenS.

Semantics.On the ground of proof of Stochastic Logic Program we can introduce

semantics of SLPs. SupposeL is a first order language andDp is a probability distribution

over the ground atoms ofp in L. If I is a vector consisting of one suchDp for every

predicate symbolp ∈ L thenI is called adistributionalL-interpretation. If a ∈ L is an

atom with predicate symbolp andI is an interpretation thenI(a) is called probability ofa

according toDp in I.

12 2. PRELIMINARIES

SupposeL is chosen to be the smallest first order language involving at least one con-

stant, a predicate and function symbols of Horn theoryP (S). In this case the interpretation

is called the distributional Herbrand interpretation ofS.

DEFINITION. An interpretationM is a distributionalL-model of Stochastic Logic

ProgramS, iff Q(a|S) ≤M(a) for each ground atoma in L.

Again, if M is a model ofS andM is Herbrand with respect toS thenM is a distri-

butional Herbrand model ofS.

Muggleton in [Mug 00] describes methods of inducing such Stochastic Logic Pro-

grams from the set of examples and background theory. Still this theory is not developed

for use in the field of data mining. Few algorithms for induction of SLPs were imple-

mented within CProgol4.5, which is a version of Progol and that is a clon of PROLOG for

induction with use of logic programming.

Stochastic Logic Programs were shown to be useful and Muggleton used them in

computational chemistry and bioinformatics to define distributions for sampling within

Inductive Logic Programming.

2.2. Knowledge Discovery in Databases and Data Mining

Research field of Knowledge Discovery in Databases, often called Data Mining, re-

ceived a lot of attention in the last few years. This is because of a need of industry not only

to store and manage the data about various domains, but to use them as good as it gets.

Strong attention is dedicated to get interesting implicit information, which we are able to

calculate from the database, but these are not explicitly stored there. Usually mix of statis-

tics and computational tools and techniques is used. Data mining aims at the discovery of

useful information from large collections of data. This knowledge can be retrieved from

database in the form of rules describing properties of data, frequently occuring patterns or

clusters of objects, etc.

Here we will give a brief introduction to fundaments of data mining and process of

Knowledge Discovery in Databases. We will not go into deep results, because this research

field is quite wide.

2.2.1. The KDD process.As it was said above, the goal of knowledge discovery is

to obtain useful nuggets of knowledge from large collections of data. As it is obvious, such

task is inherently interactive and iterative. A user of KDD system has to have understanding

of the domain of the data in order to select the right subsets of data and good criteria

of estimation whether given discovered pattern is interesting enough or not. Because of

the fact that this knowledge can only hardly (if ever) be articulated and expressed by an

artificial system, KDD systems will usually be just semiautomatic tools.

Therefore knowledge discovery from large databases can be seen as a process contain-

ing several steps. We will give here steps which are formulated in [Man 97b] by Heikki

Mannila. These are:

(1) understanding the domain

(2) preparing the data sets

2.2. KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING 13

(3) discovering patterns (data mining step)

(4) postprocessing of discovered patterns, and finally

(5) putting the result into use.

As Mannila claims, the KDD process is neccessarily iterative. The results of data mining

steps can show that some changes should be made to data set formation step, postprocess-

ing of patterns can cause user to look for some slightly modified types of patterns, etc. One

of the important research topics in KDD is an efficient support of such iterations.

Output patterns.Above, we mentioned that the task of knowledge discovery, or data

mining is to find frequent patterns occuring in the dataset of our interrest. Now we have to

explain what we mean under suchinteresting patterns. The character of a frequent pattern

depends on the application domain of our data mining task.

In [Man 97b], Mannila discusses few basic instances of data mining problem and for

each of them we have different type of frequent pattern occuring in the dataset. We will

give here a brief overview of two most important ones (as it seems to us).

Given a schemaR = {A1, . . . , An} of attributes with domain{0, 1}, and a relation

r overR, then an association rule aboutr is an expression of the formX ⇒ B, where

X ⊆ B andB ∈ R \ X. The intuitive meaning of the rule is that if a row of the matrix

r has1 in each column ofX, then the row tends to have a1 also in columnB. Given

W ⊆ R, we denote bys(W, r) the frequencyof W in r: the fraction of rows ofr that

have1 in each column ofW . The frequencyof the ruleX ⇒ B in r is defined to be

s(X ∪ {B}, r), and theconfidenceof the rule iss(X∪{B},r)
s(X,r) .

In the discovery of association rules, the task is to find all rulesX ⇒ B such that the

frequency of the rule is at least a given tresholdσ and the confidence of the rule is at least

another tresholdθ.

As Mannila claims (together with the rest of DM authors), in large retailing applica-

tions the number of rows might be106, or even108, and the number of columns around

5000. The frequency tresholdσ is typically around10−2 − 10−4. The confidence treshold

θ can be anything from0 to 1. From large databases one can obtain hundreds of thousands

of association rules.

Generic algorithms for search for appropriate association rules are based on the idea of

frequent sets, wherefrequent setis a subsetX ⊆ R for which we have thats(X, r) ≥ σ.

Once all frequent sets of datasetr are known, finding the association rules is a straight-

forward task. We only need to verify whether confidence of each rule that is possible to

construct from given frequent set is sufficiently high.

Second instance of data mining problem discussed in this work, will be finding episodes

from event sequences. Let us consider a sequence of events with timestamps of their oc-

curence. As Mannila in [Man 97b] claims, such data are routinely collected usually in

industry, telecommunication networks, process monitoring, epidemiology, etc.

Let us have the a set of all event types. Anepisodeis a partially ordered set of events.

An episode might be for example a structure representing the statement that eventsA and

B occur before an event of typeC.

14 2. PRELIMINARIES

Algorithms that search for frequent episodes are based on locating episodes of size1
at first, then use them to generate episodes of size2 and so on.

In this work we will pay special attention to the first instance of data mining prob-

lem. We will consider only manipulations with association rules, because these are basic

patterns occuring in the relational database.

2.2.2. Data Mining as Selective Theory Extraction.Although the task of data min-

ing is a synonymum for knowledge discovery process we will treat it as a search for fre-

quent and interesting patterns in the large database. As Tomasz Imielinsky in [Imi 95]

noted, the situation in data mining can be compared to the status of database processing

in the 1960’s: one had to write a separate application program for each query. Effort to

develop a strong and sufficient theory in the background of data mining can be seen in

the last few years. There is a need for theory, which will be able to express KDD queries

and results of such computation. Steps towards this were taken in [JMW 96]. Mannila in

this work proposes the use of probabilistic logic developed by Bacchus in [Bac 90]. He

introduces simple theory based on arguing that

(1) the task of data mining can be seen as a problem of extracting the interesting part

of the logical theory of a model; and

(2) the theory of a model should be formulated in a logic which is able to express

quantitative knowledge and approximate truth1.

In the next paragraphs we will briefly introduce Mannila’s theory.

He considers a database over a single relation schemaR = {A1, . . . , An} of at-

tributesAi. Each attribute has a domainDi. A databaser over R is a set of tuples

t = (t[A1], . . . , t[An]), where∀i : t[Ai] ∈ Di. Tuple relational calculus is constructed

from variabless, t ranging over tuples in the database, constant symbols for every element

of Di, symbols for the functions and relations defined onDi and the attribute symbols

A1, . . . , An.

Terms are built simply by rules: every constant symbol for an element ofDi is a

term of sortDi. If σ1, . . . , σm are terms andf is anm-ary function symbol forDi, then

f(σ1, . . . , σm) is also a term of sortDi. If s is a variable andAi is an attribute symbol,

thens[Ai] is a term of sortDi.

Atomic formulas are either of the formT (σ1, . . . , σm), where eachσj is a term of sort

Di andT is anm-ary relational symbol onDi, or of the formσ = τ whereσ andτ are

terms of sortDi.

By closing the language defined so far under boolean connectives (∧ and¬) and quan-

tification (∃ and∀) over the tuple variables one obtains the usual tuple relational calculus.

Afterwards this language is extended by constructs which allow it to express state-

ments about approximate truth of formulas. In fact anerror term is defined as either a

constant symbol,q of some domainQ (e.g.Q = R ∩ [0, 1]), or an expression of the form

G(χ(s)|ψ(s)), whereχ(s) andψ(s) are formulas in tuple relational calculus whose free

variables are amongs = (s1, . . . , sk).

1Under the termmodelwe mean model of logical theory.

2.2. KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING 15

An atomic formulais any expression of the formη ≤ δ or η = δ, with error termsη

andδ. The final representation language is obtained by closing the union of tuple relational

calculus and the set of atomic error formulas under boolean connectives and quantification.

We will give an example of an expressions written in this language and discuss their ad-

vantages and disadvantages later.

For an example of such expression let us have relational schemaR, set of columns

(attributes)X, attributeB and treshold values for frequencyσ and confidenceθ. Then a

formula

G(t[B] = 1|
∧

A∈X

(t[A] = 1)) ≥ θ

means that the association ruleX ⇒ B has confidenceθ. Similarly the formula

G(
∧

A∈X

(t[A] = 1) ∧ (t[B] = 1)) ≥ σ

represents the fact that the ruleX ⇒ B has frequencyσ2.

Semantics of such rules is defined througherror measures. Intuition behind this term

is that an error measure represents a “degree of falsity” ofχ given thatψ is true.

Mannila defines an error measure forR in [JMW 96] as any functiong which assigns

to every triple(r, χ(s), ψ(s)), wherer is a database overR andχ(s) andψ(s) are formulas

of tuple relational calculus, a valueq ∈ R ∩ [0, 1] such that

(1) g(r, χ(s), ψ(s)) = 0 if r |= ψ(s)→ χ(s), andr |= ∃s : ψ(s)
(2) g(r, χ(s), ψ(s)) = 1 if r |=6 ∃s : ψ(s)
(3) g(r, χ(s), ψ(s)) ≤ g(r, χ′(s), ψ′(s)), if |= ψ(s)↔ ψ′(s) and|= χ′(s)→ χ(s).

Given an error measureg, the semantics of an error termG(χ(s)|ψ(s)) in r is the value

g(r, χ(s), ψ(s)) and the relationr |=g ϕ is straightforwardly defined.

As it is obvious, many functions will meet requirements on error measure, even those

which have quite bad properties. Mannila does not take these “bad” functions into account.

Generic data mining algorithm.In the next part we show the generic data mining

algorithm for finding all frequent patterns (in general meaning of pattern). This algorithm

(although naive) can be adapted to instances of data mining problem described above.

We will not discuss algorithm 2 more, because we will adapt this algorithm for our

purposes later and it will be sufficiently discussed in chapter 4.

2.2.3. Condensed represenations.As it was said above, data mining is an iterative

process. Outputs of one data mining step usually influence inputs into the second one. As

an implication of that we can find out that similar data mining queries have to be evaluated

many times. This is quite inefficient effect. This gives rise to the concept ofcondensed

representation. There are two issues, which are solved by this concept.

The first is evaluation of similar queries faster than by looking at each of them indi-

vidually. Ideally this has to be possible in as few passes through the database as possible.

And the second problem is, how to evaluate queries from a query class without looking

at the whole data set.

2Note that an expression of the formG(A|B) means conditional probability ofA given thatB holds.

16 2. PRELIMINARIES

Algorithm 2 FFP - Finding all frequent patterns (as it is introduced by Mannila in
[Man 97b]).
Assume that there is an ordering< defined between the patterns ofP.

C := {p ∈ P|∀q ∈ P : p < q};
F := ∅;
while C 6= ∅ do

for eachp ∈ C do
find the number of occurences ofp in r;
F := F ∪ {p ∈ C|p is sufficiently frequent inr};
C := {p ∈ P| all q ∈ P with q < p have been considered already and it is possi-
ble thatp is frequent};

end for
end while
outputF ;

From the above mentioned it follows that if we have a class of structuresD, a data

collectionr ∈ D, and a class of patternsP, a condensed representationfor r andP is a

data structure that makes it possible to answer queries of the form“How many times does

p ∈ P occur in the databaser?” approximately correctly and more efficiently than by

looking at the databaser itself.

In literature, one can find the following simple example of a structure fulfilling require-

ments on condensed representation: a sample from the data set. By counting occurencies

of given pattern in the sample one gets an approximation of number of occurencies in the

original data set.

Few other examples were given and studied in literature. Still, according to our knowl-

edge, none of them was good enough to be widely agreed upon as a good approach to this

problem. Primary aim of this work is to propose a structure which seems to us to be a good

candidate on condensed representation.

2.2.4. Inductive databases.According to what was said above about KDD as an

iterative process, there is another aspect of this fact. User of an KDD system often wants

to cross the boundary between data and structures which were computed as an output of

previous data mining steps. For example, the user might want to view outputs of such KDD

process, select some of computed patterns, look at the exceptions of these patterns, form a

set of patterns describing these exceptions, etc. To make such moves between the data and

the output patterns Mannila proposes the following principle:

KDD queries have to satisfy closure property: the result of a KDD query should be an

object of a similar type than the arguments.

Relational databases satisfy this. Answers to SQL queries over relations are relations

again. These requirements partially motivate the term ofinductive database.

Framework ofinductive databasesintroduced in [Man 97b] and elsewhere in the DM

literature is focused on usage of association rules as an output of KDD query. The core

idea is based on the database consisting of the raw data and some more or less inductivelly

obtained rules. The terminductive databaseshould be compared with the termdeduc-

tive database. While deductive databases use simple form of deduction to augment fact

2.2. KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING 17

databases to contain a potentially infinite set of derived or deduced facts, the goal of induc-

tive database is that in addition to the facts, the database will contain a potentially infinite

set of induced rules (or some form of more general information structure)

As Mannila claims in [Man 97b], developing condensed representations for various

classes of paterns seems to be a promising way of implementing inductive databases and

more generally improving the effectiveness of data mining algorithms. Whether this ap-

proach is generally useful is still open.

2.2.5. Open problems.In the last years we can see fast development in the field of

data mining. As Agrawal mentioned in [Agr 02], data mining showed a strong potential for

the future, still while this is a fast evolving research field, there are many open problems.

One of the most important open problems seems to be a development of a general theory

of data mining. Sometimes this is called the theory of inductive databases. This is tightly

connected with development and usage of the concept of condensed representations. This

work focuses on this research problem.

There are also other problems or issues concerning KDD systems and query languages.

Architecture of KDD systems, support of KDD process from the side of the database man-

agement systems, development of language suitable to express KDD queries, algorithmic

problems, etc. These are hot issues, what can be seen on talks on conferences and work-

shops about knowledge discovery and data mining.

CHAPTER 3

Data Mining Logic Programs

In the previous chapter we briefly described research fields which have influence on

this work or motivation for it. In the core of this work, which are chapters 3 and 4, we

will propose framework designed to solve some of the problems and issues mentioned

in the previous chapter. We will introduce original framework which aims to attack the

problem of condensed representations and through this also to influence the concept of

induction database. We will adapt mechanisms developed by Stephen Muggleton for Sto-

chastic Logic Programming and principles of logic programming to develop a structure

able to serve as a condensed representation.

3.1. Introduction

As it was introduced above, this chapter will introduce syntax and semantics ofData

Mining Logic Programs(DMLP). This kind of logic programs was strongly inspired by

Stephen Muggleton’sStochastic Logic Programs([Mug 00]), which we saw as a good

example of probabilistic logic programs and wanted to use them (or to inspire ourselves) in

the field of data mining. This sort of logic programs was chosen because of its well defined

syntactic and semantic properties which we considered to be quite similar to requirements

of the language used in the data mining field ([JMW 96]).

In 3.1.1 we will introduce first steps to syntax and semantics of DMLP to help under-

stand sections 3.2 and 3.3, which contain the core of this work.

3.1.1. Elementary description of DMLP. We will define DMLP as a tool which can

help us to solve the following problem. Let us have the relational table over finite domains

(for simplicity we will use binary data) and we would like to construct an object which

describes the database as good as it gets. Afterwards we can “ask” about properties of the

database and we will be able to compute an answer with help of our description, without

looking into the database (i.e. answering algorithm does not need to walk through each row

of the database to compute an answer). Of course, such an object will not be any “oracle”.

It will be able to help us compute only appropriate type of questions. Our aim will be

to build such mechanism for questions relative to statistic properties of the database (e.g.

“How many percent of rows have value1 in columnA?”). As it was already mentioned,

we were strongly inspired by SLPs and on the basis of Logic Programming we built our

DMLP.

Data Mining Logic Program is a set of clauses labeled by probabilities with which

they hold in the given relational database. For simplicity, we will use clauses only with one

variable. From this we have that a clause will be able to express only the sentence about

19

20 3. DATA MINING LOGIC PROGRAMS

one row of the database. These clauses will be also restriced to express only sentences

about the database. This requirement leads us to use predicates with fixed arity.

Development of semantics of our logic programs will be strongly inspired by mecha-

nism of resolvence (widely described in literature about LP and introduced in the chapter

2). In fact, we will use very similar mechanism as Muggleton does in [Mug 00] to com-

pute distributional model of SLPs. For this purpose we will define an evaluation function,

which will be able to compute this distributional model from chain of clauses produced by

SLD refutation (for explanation see [Sef 00], [Llo 87]).

3.2. Syntax

3.2.1. DMLP syntax.

DEFINITION 3.2.1. LetR = (A1, . . . , An) be arelational schemaconsisting of at-

tributes named by symbolsAi. EachattributeAi is defined over finite domainDi. Data-

baser over the relational schemaR is a set oftuplesx = (x[A1], . . . , x[An]), where

∀i : x[Ai] ∈ Di.

DEFINITION 3.2.2. Variable ranges only over tuples of the database.Constant sym-

bols are defined for each element ofDi ∀i ∈ 1 . . . n and we define also special constant

symbols for real numbers fromR used aslabels. We definepredicate symbolsto operate

only over tuples from the database (or variables).

NOTE 3.2.3. In the next text we will use the following convention for denotation of

symbols in it. Variables will be denoted by lettersu, v, x, y, z. Constants will be denoted

by lettersa, b, c, predicates by lettersp, q. Database will be denoted by characterr,

relational schema byR and real number constants byg. All symbols can be subscripted or

upper scripted. For indexes we will use symbolsi, j, k, l,m, n. Clauses will be denoted by

upper case lettersC,D and sets of literals by upper case lettersA, B. Sets of clauses will

be denoted by upper case Greek letters. If these rules will be broken somewhere in the text

it will be explained immediately. Special functions will be denoted by special characters

ad hoc according to our needs.

DEFINITION 3.2.4. Letr be a database over a relational schemaR = (A1, . . . , An)
of attributesA1, . . . , An over finite domainsD1, . . . , Dn and letx be variable ranging over

the databaser.

Termsare built as follows:

• Every constant symbol for an element ofDi is a term of sortDi (these terms will

be calledground).

• If x is a variable, thenx[Ai] is a term of sortDi.

We definewell-formed formulasinductively as follows:

• If p is an n-ary predicate symbol andσ1, . . . , σn are terms thenp(σ1, . . . , σn) is

awell-formed formula(atomic formula, atom).

• If σ1 andσ2 are terms of sortDi thenσ1 = σ2 is alsowell-formed formula

(atom), we call it alsobasic equality.

3.2. SYNTAX 21

• If F andG are formulas, then also(¬F), (F ∧ G), (F ∨ G) arewell-formed

formulas.

• Literal is an atom or negation of an atom.

• Well-formed formula is said to begroundiff it contains no variables.

We defineclauseas a formula consisting of a finite set of literals connected by disjunction

of the form∀x1, . . . ,∀xs(L1 ∨ · · · ∨ Lm), whereL1, . . . , Lm are literals andx1, . . . , xs

are all variables occurring inL1 ∨ · · · ∨ Lm.

NOTE 3.2.5. As it is usual, we denote the clause∀x1, . . . ,∀xs(A1∨· · ·∨Ak∨¬B1∨
· · · ∨ ¬Bn) asA1, . . . , Ak ← B1, . . . , Bn. We say that the left side of the clause is called

theheadand the right side is called thebody. All variables are assumed to be universally

quantified, commas in the bodyB1, . . . , Bn denote conjunctions and commas in the head

A1, . . . , Ak denote disjunctions.

DEFINITION 3.2.6. Horn clausesare clauses containing at most most one positive

literal (at most one atom in the head).Definite clauseis a clause containing exactly one

positive literal. A non-definite Horn clause is called agoal. A definite clause for which all

the variables in the head appear at least once in the body is calledrange restricted. We say

that a clause isrecursiveiff the predicate, which occurs in the head of the clause, appears

also in the body of the clause.

NOTE 3.2.7. Definitions given above were already mentioned in the chapter 2. We

defined some of already known terms again to hold the definition of syntax of DMLP

consistent.

In the next text we will use onlygoalsandrange restricted definite clauseswith one

variable.

NOTE 3.2.8. Set of clauses is treated as a conjunction of clauses (because well-formed

formulas are inductively closed on conjunction, disjunction and negation, we can say that

also a set of clauses is a well formed formula). We will use termformula, instead of longer

well-formed formula.

DEFINITION 3.2.9. Clause in the form ofg:C, whereg ∈ R ∩ [0, 1] andC is a range

restricted definite clause or a goal, is calledDMLP clause.

DEFINITION 3.2.10.DMLP (Data Mining Logic Program) Φ is a set of DMLP clauses

g:C, whereg is a value of the probability of Horn clauseC. The subsetSp of clauses

containing predicate symbolp in the heads, is called theDMLP definition ofp.

NOTE 3.2.11. Letp be the predicate symbol andΦ be the DMLP program. We will

write p ∈def Φ whenΦ contains the definition ofp. This is a syntactic notation.

DEFINITION 3.2.12. We say that∆ = {pr(a)← |∀a ∈ r} is a set ofDMLP examples

and the predicatepr used in such set is said to beassociatedwith the databaser. That is

the databaser expressed according to syntax of DMLP. We say that∆ is associatedwith

r.

22 3. DATA MINING LOGIC PROGRAMS

NOTE 3.2.13. From this point on, wherever we will mention the set of DMLP exam-

ples∆ we mean that there exists a relational databaser associated with∆. It means that

the defitniion ofr will be omitted wherever it will be possible. This only serves to shorten

the text size.

DEFINITION 3.2.14. LetΦ be a DMLP program. LetΓ be a set of range restricted

definite clauses defined according to syntax rules given above. We say thatΓ is DMLP

background theory ofΦ when for each predicate symbolp, p ∈def Φ =⇒ p ∈def Γ and

body of each clauseC ∈ Γ contains formula in the form ofpr(x), wherepr is the predicate

associated with the databaser andx is a variable symbol used in the head of the clauseC.

Background theoryΓ will serve us as the set of definitions of predicates (tools) which

can be used to describe relational databaser. We will treat clauses ofΓ as if their body

does not contain member of the formpr(x). We will implicitly assume that each clause of

Γ contains such formula.

As it was mentioned in 3.1.1, Data Mining Logic ProgramΦ will be that object which

will help us compute answers to questions about statistical properties of given databaser.

Computation will run only over the programΦ without using the databaser. By this we

will be able to throw away the whole databaser and manipulate only withΦ.

EXAMPLE 3.2.15. Syntax

Databaser:

A1 A2 A3

1 0 1

1 0 0

0 1 1

1 1 0

Set of DMLP examples∆ associated withr:

pr((1, 0, 1))←
pr((1, 0, 0))←
pr((0, 1, 1))←
pr((1, 1, 0))←

DMLP background theoryΓ:

p1(x)← x[A1] = 1
p2(x)← x[A2] = 1, x[A3] = 0
p2(x)← x[A1] = 1

3.3. SEMANTICS 23

3.3. Semantics

3.3.1. Probability function.

DEFINITION 3.3.1. Letθ be a set of tuplesθ = {v1/σ1, . . . , vn/σn}. θ is called

substitutionwhere eachvi is a variable and eachσi is a tuple of terms and for no distincti

andj is vi the same asvj .

LetF be a formula, thenFθ is calledinstantiationof F iff each occurrence of variable

vi in Fθ is replaced by the tuple of ground termsσi ∀i ∈ 1, . . . , n (i.e. Fθ is the ground

formula).

LetSp be the definition of predicatep, thenSpθ is instantiationof the definition of the

predicatep iff for each clauseC ∈ Sp holds thatCθ is instantiation of formulaC.

DEFINITION 3.3.2. Letr be a database,Γ be a DMLP background theory and∆ be the

set of DMLP examples associated withr. LetF be a well-formed formula or a definition

of some predicate symbol andx be a set of free variables inF ranging over tuples ofr. By

notationF (r, x) we mean set of all tuplesa ∈ r for which exists instantiationθ such, that

Fθ is deductively satisfied inΓ ∪ ∆ (we writeΓ ∪ ∆ |= Fθ). If F is an empty formula

thenF (r, x) = r.

In other words,F (r, x) = {a ∈ r|∃θ∃i : (xi/a) ∈ θ ∧ Γ ∪ ∆ |= Fθ ∧ x =
(x1, . . . , xk)}. Therefore we writeF (r, x) ⊆ r, or say thatF (r, x) is theselectionfrom

r according toF . Because the definition of the predicatep can be seen as a disjunction

of clauses, we can also say that DMLP clause, or the definition of the predicate (union of

selections)p is theselectionfrom the databaser.

NOTE 3.3.3. Note that in the definition of instantiation of formula, we say that each

variable is replaced by the tuple of ground terms and variables are syntactically constrained

to range only over tuples of some databaser. Simple corollary of this is that all predicates

which say something about the given databaser are of the same fixed arity as tuples of

r. Also if we omit labels of DMLP clauses, we can see all predicates as definitions of

selections from the databaser, which defines partial ordering of selections and this allows

us to compare two relations of such kind by usage of inclusion operator.

Now we will define theprobability of clauses and definitions of predicate symbols.

In fact it will be somehow a complementary term toerror measuredefined by Mannila in

[JMW 96].

DEFINITION 3.3.4. LetA, B be well-formed formulas andxA, xB sets of free vari-

ables used in them, where the set of variablesxA is distinct from the setxB . Let G be

a function that assigns to every couple(r, C), wherer is a database over the relational

schemaR = (A1, . . . , An) andC = A← B is a Horn clause, a valueq ∈ R ∩ [0, 1] such

that:

(1) G(r, C) = 0⇐⇒ A(r, xA) ∩B(r, xB) = ∅
(2) G(r, C) = 1⇐⇒ B(r, xB) ⊆ A(r, xA)

24 3. DATA MINING LOGIC PROGRAMS

(3) Let alsoC ′ = A′ ← B′ be a Horn clause. Then

(Γ∪∆ |= (B ↔ B′∧A→ A′)) =⇒ G(r, C) ≤ G(r, C ′)1, whereΓ is a DMLP

background theory, and that is the same as

B′(r, xB′) = B(r, xB) ∧A′(r, xA′) ⊆ A(r, xA) =⇒ G(r, C) ≤ G(r, C ′)

LetG be a function from the class of functions defined above. We say that valueG(r, C)
is aprobability of clauseC andG is aprobability function.

NOTE 3.3.5. WhileF (r, x) = r, whereF is an empty formula andx is the set of

free variables inF it comes out that ifC = A ← B andB is an empty formula, then

C(r, xC) = A(r, xA), wherexC andxA are corresponding sets of free variables. This

works because each clauseC ∈ Γ contains formula in the form ofpr(x) in its body where

pr is a predicate symbol associated withr. Therefore it is excluded that there exists a

clauseC ∈ Γ, which has an empty body.

Similar note holds whenA is an empty formula. However, it is quite devious to define

probability of a goal, while it would mean the probability of the question. Under the

probability of the question we mean the question on the probability of the fact given as a

goal. ThereforeG(r,← B) = G(r,B). We will not use denotationG(r,← B), we will

not even assign probability to goals.

In fact, the functionG is able to evaluate every selection from some given databaser.

It is a measure of descriptive power of a selection according tor.

As it was mentioned above, the definition of probability functionG is somehow com-

plementary to the definition of an error measure in [JMW 96]. As Mannila claims, many

functions will meet requirements on probability of selection. Many times also those which

we consider bad for our purposes. However, we give an example of the probability func-

tion which is reasonable for our goals and we will use this function in the next parts of this

work. Therefore it will be noted by symbolG, although it can be seen as an ambiguity.

Still we allow some other definitions of the functionG for other purposes.

DEFINITION 3.3.6. Letr be a non-empty database,C be a clause andxA, xB corre-

sponding sets of those free variables . By|r| we mean the number of rows of the database

r.

If C is holds the form ofC = A← B, whereA andB are non empty formulas then:

G(r, C) =

{
|A∧B(r,xA ∪xB)|

|A(r,xA)| if |A(r, xA)| > 0

0 if |A(r, xA)| = 0

If C is a clauseC = A←, whereA is a non empty formula then:

G(r, C) =

{
|A(r,xA)|

|r| if |r| > 0

0 if |r| = 0

As it is obvious, the result of the given functionG represents the conditional proba-

bility of A ∧B assuming thatA holds, when clause given as an input has non empty head

1While given expression can be hard to read, please note that the operator of logical following|= has higher
priority than∪,↔ and→ and these have higher priority that∧,∨ and finally¬.

3.3. SEMANTICS 25

and body. For clauses with an empty body it returns probability ofA according tor. As it

was said in the note 3.3.5, we do not define probability functionG for goals.

In fact, especially for clauses with an empty body,G returns the value which is similar

to confidenceof clauseC in literature about data mining (e.g. [JMW 96]). FunctionG

applied on DMLP clauses can also be interpreted as a function returning conditional prob-

ability under which somea ∈ r satisfies the body of the clause assuming that it satisfies its

head, or (for clauses with an empty body) probability under which the head of the clause

holds for somea ∈ r.

NOTE 3.3.7. This definition allows us to speak about replacement of the head of the

clause by its body and to compute the probability with which the resulting clause holds.

This mechanism will be used in the next parts of this work, where we will define semantics

of an evaluation function.

We can extend functionG defined above in the definition 3.3.4 for selections in gen-

eral.

DEFINITION 3.3.8. Letr be a database andSq = {A0 ← B0, A1 ← B1, . . . , An ←
Bn} be the definition of a predicateq. Let alsoxA0 , xB0 , . . . , xAn

, xBn
be sets of free vari-

ables corresponding to clauses fromSq. LetA =
⋃n

i=0Ai(r, xAi
) andB =

⋃n
i=0Bi(r, xBi

).
We define theprobability of the selectionq by applying the definition of the functionG on

setsA andB.

G(r, Sq) =
|A ∩ B|
|A|

Now we are able to define the relation of logical following|=G according to the func-

tionG straightforwardly.

DEFINITION 3.3.9. LetD = g:C be a DMLP clause,G be the probability function

andr be a database over a relational schemaR.

r |=G D ⇐⇒ G(r, C) ≥ g

Let Φ be a DMLP program and letD ∈ Φ. Now

r |=G Φ⇐⇒ ∀D ∈ Φ : r |=G D

NOTE 3.3.10. The previous definition says that the probability that the DMLP clause

D = g:C follows (we meanfollowing in terms of the previous definition) from the database

r is at leastg.

3.3.2. Evaluation function. When we have already defined constraints and restric-

tions under which some DMLP program can be induced from the given databaser, we

will define model semantics for such DMLP programs and we will try to show that the

database can be a probabilistic model of such induced program. But at first we will need

some additional definitions which will help us with this approach.

DEFINITION 3.3.11. LetΦ be a database DMLP program,Γ be a DMLP background

theory ofΦ, ∆ be a set of DMLP examples andC =← p(a) be a goal, wherea is a tuple

26 3. DATA MINING LOGIC PROGRAMS

of ground terms andp ∈def Γ is a predicate symbol. FunctionΞ is defined as follows

Ξ(∆,Γ,Φ, C) = q

whereq ∈ R ∩ [0, 1] is calledDMLP evaluation function.

Again, by the definition above, we defined the whole class of evaluation functions.

In general an evaluation function estimates the probability of any given goal according to

DMLP examples, DMLP background theory, and induced DMLP program.

As it was said for the probability functionG, many functions will meet requirements

on an evaluation function. As we did for an example of probability function, we give

an appropriate example on an evaluation function, which we will use in the rest of this

work. On the ground of proof of DMLP program, we will define instance of an evaluation

function which will be used later. It will work in the similar way as an SLD refutation. But

at first let us define a few additional terms.

NOTE 3.3.12. In the next text we will use denotationP (Φ) for a logic program which

contains clauses of DMLP programΦ with labels removed.

DEFINITION 3.3.13. LetΓ be a background theory andG the probability function.

We say thatΓbase is a DMLP background basewhenΓbase = {G(r, C):C|∀C ∈ Γ} ∪
{G(r, Ce):Ce ← |∀Ce ∈e Γ} where underCe we understand all basic equalities contained

in the clauses ofΓ. Under the expressionCe ∈e Γ we understand that there exists a clause

C ∈ Γ which contains the basic equalityCe in its body.

Γbase contains the union of DMLP clauses labeled by the functionG and the set of

labeled basic equalities which can be found inΓ. As it is obvious,Γbase is a DMLP

program.

EXAMPLE 3.3.14. DMLP background baseΓbase constructed according tor, ∆ and

Γ from example 3.2.15 on page 22:

0.75 : x[A1] = 1←
0.5 : x[A2] = 1←
0.5 : x[A3] = 0←
1.0 : p1(x)← x[A1] = 1

0.33 : p2(x)← x[A2] = 1, x[A3] = 0
1.0 : p2(x)← x[A1] = 1

DEFINITION 3.3.15. DMSLD inference ruletakes a goalg1:C1 and a labeled clause

g2:C2 and produces a labeled goal (g1 · g2):CR, whereCR is an SLD resolvent ofC1 and

C2. If there is no SLD resolvent for clausesC1 andC2, there is no DMSLD resolvent of

them, too.

DEFINITION 3.3.16. LetΦ be a DMLP program,Γbase be a DMLP background base

andC be a goal.DMSLD refutationof the goalC is the repeated application of the DMSLD

3.3. SEMANTICS 27

inference rule in the same manner as the SLD refutation does. The DMSLD refutation can

be represented in the form of sequence of clauses, used to produce partial resolvents of the

whole refutation,〈1:C, g1:C1, . . . , gn:Cn〉, whereC is a goal and∀1 ≤ i ≤ n : (gi:Ci) ∈
Φ ∪ Γbase and〈C,C1, . . . , Cn〉 is a an SLD refutation ofC from P (Φ ∪ Γbase).

We are prepared to define an evaluation functionΞ1 on this basis. The definition of

it will be divided into three steps. In the definition 3.3.17 we will show how functionΞ1

is able to estimate label of a simple goal with a constant, in the definition 3.3.21 we will

extend it to the estimation of labels of goals with a variable in them. Finally in the definition

3.3.23 we will extend function into its full power. We will show how it estimates labels for

whole clauses. As far as the definition of an estimation functionΞ1 is quite complicated

we give also few examples near definitions.

DEFINITION 3.3.17. Letr be a relational database over a relational schemaR =
(A1, A2, . . . , An), Γ be a DMLP background theory,Φ be a DMLP program andC =←
p(a) be a goal wherep ∈def Γ anda ∈ A1 × A2 × · · · × An is a tuple of terms. Let also

γ = 〈1:C, g1:C1, . . . , gn:Cn〉 be a sequence of DMLP clauses representing a DMSLD

refutation of the goalC. There can exist more than one such refutation, or even none.

Answer probability of an evaluation functionΞ1 is the value:

Ξ1(∆,Γ,Φ, C) =

{
max∀γ(

∏n
i=1 gi) if there is some DMSLD refutationγ

0 if there is no DMSLD refutation forC

NOTE 3.3.18. The first member of the DMSLD refutation is the goal labeled by the

value1. According to the note 3.2.5, in the body of the clause we have only negative

literals, which do not have to hold and therefore they have to have label0. While DMSLD

refutation is based on the proof by contradiction, where we start from negation of the goal,

we are allowed to start the refutation from the goal1:C.

This had to be done, because according to the note 3.3.5, the probability of the DMLP

goal is not defined.

EXAMPLE 3.3.19. DMSLD refutation and computation ofΞ1 for goal with a con-

stant constructed according tor, ∆ andΓ from example 3.2.15 andΓbase from example

3.3.14. For simplicity, we will use an empty DMLP programΦ. It will not influence the

computation, while DMLP background baseΓbase is DMLP program too.

Let us have the goal← p2((1, 1, 0)). We can compute three DMSLD refutations for

it. These are shown in the next table.

∏n
i=1 γ

0.0825 0.33:p2(x)← x[A2] = 1, x[A3] = 0 ; 0.5:x[A3] = 0← ; 0.5:x[A2] = 1←
0.0825 0.33:p2(x)← x[A2] = 1, x[A3] = 0 ; 0.5:x[A2] = 1← ; 0.5:x[A3] = 0←

0.75 1.0:p2(x)← x[A1] = 1 ; 0.75:x[A1] = 1←

28 3. DATA MINING LOGIC PROGRAMS

In the first column, there is a value of product of labels used in the given refutation. In

the second column we show a chain of clauses used in each refutation. The final result of

the functionΞ1 for the goal← p2((1, 1, 0)) is

Ξ1(∆,Γ, ∅,← p2((1, 1, 0))) = 0.75

Let us take a closer look into the definition ofΓbase . It consists of a set of labeled

clauses constructed from a DMLP background theoryΓ and a set of labeled basic equali-

ties. While these basic equalities are clauses with an empty body, the probability function

G treats them as if they have expressionpr(x) in the body, wherepr is the predicate symbol

associated with a databaser andx is the variable contained in the basic equality. Because

of this, the label of a basic equality can be seen as a proportion of a database which is cov-

ered by a selection defined by it. This is the property of all DMLP clauses with an empty

body.

Labels of clauses with non-empty body can be seen as a proportion of a part of a

database, where the head and the body hold in conjunction, to the size of the part of the

database in which only body of the clause holds. In other words, if we had two selections,

one defined as a part of the database where the body of the given clause holds and the

other as a part where the head and the body of the given clause hold together, label of

such clause would be the size of the second selection divided by the size of the part of the

database defined by the first selection. This is exactly what functionG does.

Here we will care only about clauses with an empty body. One of good methods to es-

timate proportion of conjunction of basic equalities to the size of the whole database would

be a minimalistic approach. By this we mean calculation of minimal possible intersection

of segments of the database. Although we know the proportion of the database in which

the given member of the conjunction holds, we do not know exactly which part it is. We

only know its size. Of course, size of such intersection depends on particular parts of the

database (we need to know whether given row lies in the intersection of members of the

conjunction or not). Because we do not know this information, we can only guess the size

of such an intersection. From sizes of parts of the database where the given expressions

hold we can estimate the size of the least intersection where the conjunction of them must

hold (this can easily be zero). Again we do not know which part it is. We just know its

size.

NOTE 3.3.20. We can estimate the label of the least intersection of two labeled se-

lectionsg1:S1 andg2:S2 asmax(g1 + g2 − 1, 0):(S1, S2). This equation can be extended

to tuple of selections. Let us have selectionsg1:S1, . . . , gn:Sn. Probability of their least

intersection can be estimated as

Ξ1(∆,Γ,Φ, S1 ∧ · · · ∧ Sn) = max((
n∑

i=1

gi)− (n− 1), 0)

It is easy to see that∀i : Ξ1(∆,Γ,Φ, S1 ∧ · · · ∧ Sn) ≤ gi.

DEFINITION 3.3.21. Let us have similar assumptions as in the definition 3.3.17. Let

C =← p(x) be a goal with a variablex and a predicate symbolp ∈def Γ.

3.3. SEMANTICS 29

For each DMSLD refutationγ = 〈1:C, g1:C1, . . . , gn:Cn〉 we can construct a set of

basic equalitiesγe = {gk:Ck|∃k : 1 ≤ k ≤ n ∧ gk:Ck ∈ γ}2, where eachCk is a

basic equality and the set consisting of the rest of the given DMSLD refutationγe = {gl:
Cl|∃l : 1 ≤ l ≤ n∧ gl:Cl ∈ γ}, where eachCk is a clause with non empty head and body.

Conjunction of these basic equalities can be seen as a selection defining predicatep. Under

ωγe
= max((

∑
∀gi:Ci∈γe

gi)− (|γe| − 1), 0)

we understand proportion of the least intersection of selections defined by the basic equal-

ities fromγe.

Answer probability of functionΞ1 for such a goal will be

Ξ1(∆,Γ,Φ, C) =

{
max∀γ((

∏
gi:Ci∈γe

gi) · ωγe
) (1)

0 (2)

The first equation holds when there exists some DMSLD refutation of the goalC.

Answer probability ofΞ1 is 0, when there is no DMSLD refutation of the given goalC.

Note that we used equation from the note 3.3.20 to compute the estimation of the least

intersection of basic equalities.

EXAMPLE 3.3.22. DMSLD refutation and computation ofΞ1 for a goal with a vari-

able constructed according tor, ∆, andΓ, from the example 3.2.15 andΓbase from the

example 3.3.14. For simplicity, we will use again an empty DMLP programΦ. It will

not influence the computation, because DMLP background baseΓbase is a DMLP program

too. Whole DMSLD refutations can be found in the example 3.3.19

Let us have the goal← p2(x). We can compute three DMSLD refutations for it. These

are shown in the next table.

∏
ωγe

γe γe

0.0 0.0 0.5:x[A3] = 0← ; 0.5:x[A2] = 1← 0.33:p2(x)← x[A2] = 1, x[A3]

0.0 0.0 0.5:x[A2] = 1← ; 0.5:x[A3] = 0← 0.33:p2(x)← x[A2] = 1, x[A3]

0.75 0.75 0.75:x[A1] = 1← 1.0:p2(x)← x[A1] = 1

In the last two columns the table above shows parts of DMSLD refutations divided

into two groupsγe andγe. The second column shows the value ofωγe
and finally in the

first column there is the value of the product(
∏

gi:Ci∈γe
gi) · ωγe

Ξ1(∆,Γ, ∅,← p2(x)) = 0.75

Finally we will extend the functionΞ to be able to compute also labels of the whole

clauses.

DEFINITION 3.3.23. Let us have the same assumptions as in the definitions3.3.17 and

3.3.21. LetC = A ← B1, · · · , Bn be a range restricted definite clause with a variablex

2Althoughγ is not the set, we used expressiongk:Ck ∈ γ. By that we mean that the given DMLP clause is one
of the members ofγ.

30 3. DATA MINING LOGIC PROGRAMS

and a predicate symbolp ∈def Γ. Let us also have return values of the functionΞ1 for the

goals← A,← B1, · · · ,← Bn. We can compute the estimation of the label on the right

side of the clause by using the equation from the note 3.3.20 as

Ξ1(∆,Γ,Φ, B1 ∧ · · · ∧Bn) = max((
n∑

i=1

Ξ1(∆,Γ,Φ,← Bi))− (n− 1), 0)

Answer probability of the functionΞ1 for such clause is

Ξ1(∆,Γ,Φ, C) = Ξ1(∆,Γ,Φ,← A) · Ξ1(∆,Γ,Φ, B1 ∧ · · · ∧Bn)

Just like after the definition of the probability functionG, we decided to use general

notationG for the particular probability function. In the rest of this text we will use notation

Ξ for functionΞ1, because it suits our needs.

Because the definition of the evaluation functionΞ may seem to be quite complicated

and foggy, we have to explain it. For simple goals, which are the goals with one predicate

symbol without any variables, the functionΞ evaluates all possible deductive proofs of the

given ground atom and chooses the one which assigns the maximal conditional probability

to the goal. This is the conditional probability that if the given ground atom belongs to the

given databaser it holds in it as well, according to the given DMLP background base and

the DMLP program. Note thatΞ evaluates only those DMSLD refutations for the given

goal, for which all basic equalities appearing in the refutation hold.

For more complicated goals, which are those including a predicate with a variable, it

estimates the maximal probability that the given clause holds in the databaser according to

alternative definitions of the goal (i.e. conjunction definitions of predicates in the goal) in

DMLP background theoryΓ. Because the only constructions, which define selections, are

basic equalities in DMLP background theoryΓ, the definition of each member of the goal

consisting only of basic equalities must be built from them. This is done for each possible

proof (DMSLD refutation) of the given goal. At this point we can divide the refutation into

two parts. One is constructed by using clauses which only substitute members of the resol-

vent by other predicates, which have to be substituted in the next steps of refutation, and

the second part, consisting of basic equalities appearing in the definition of the selection

which is finally represented by the given goal. By computing the product of labels of the

first part of the refutation we compute the probability that the goal can be represented by

the conjunction of computed basic equalities and for the second part we have to compute

the proportion of the least part of the databaser which possibly can be described by these

basic equalities. We simply compute the least intersection of selections defined by them.

By multiplication of these two numbers we have the size of the minimal proportion of the

databaser which can be described by given goal. In other words, we have the probability

with which some tuple of atoms belongs to the databaser if it satisfies the given goal.

Finally, for the whole clauses, the functionΞ estimates the value with which both the

body and the head of the clause hold in the database. This value represents an estimation

of the probability with which we can replace the head of the clause by its body. Although

this is a bold statement, we will prove it in the theorem 3.3.26.

3.3. SEMANTICS 31

Note that the functionΞ estimates the least probability that atom holds without looking

into the database. By this we mean, that an algorithm for estimation of probability of a goal,

described in the definition of functionΞ, does not need to use the database to compute the

probability of a given goal.

In the rest of this part of the text we will show what the relation betweenΞ andG is.

At first we will prove lemma which will be used in the proof of the theorem 3.3.26.

LEMMA 3.3.24. LetΓbase be a DMLP background base constructed to somer, ∆ and

Γ. Let alsoΦ be a DMLP program. Let finally← p(a) be a goal with a constanta. Then

Ξ(∆,Γ,Φ,← p(a)) ≤ G(r, p(a))

PROOF. We will use induction to prove the lemma above. We will show that for every

refutation of the goal← p(a) value of the probability functionG,G(r, p(a)) is higher than

an estimation byΞ.

(1) If there is no refutation of← p(a), thenΞ(∆,Γ,Φ,← p(a)) = 0. From this

simply follows that the lemma 3.3.24 holds.

(2) Let us assume that there is no clause, with the predicate symbolp in the head,

in Φ. Then any refutationγ of the goal← p(a) must contain a clause from

Γbase with the predicatep in its head. In fact it will be the first member of

the refutationγ. From the definition 3.3.21 we see that the final result of the

evaluation functionΞ is a product of labels of members (we mean members

which are clauses with non-empty head and body) of the refutation. Therefore

∃gk:Ck ∈ Γbase which is the member ofγ. From that we have that
∏n

i=1 gi ≤
gk. Because for eachgj :Cj ∈ Γbase we have thatgj = G(r, Cj), we can say that

∀γ∃k
∏n

i=1 gi ≤ G(r, Ck) what completes the proof in this step. (Although the

probability function is not defined for the goalC =← p(x), for simplicity we

use denotationG(r, C) for the expressionG(r, p(x))).
(3) Now assume that there is already one clause with the predicate symbolp in its

head inΦ. Then there is a refutationγ which was chosen because it leads to

the maximal return value ofΞ. But this refutation must contain the clausegk:Ck

from eitherΓbase or Φ which contains the predicatep in its head.

(a) if gk:Ck is fromΓbase then the step 2 applies.

(b) if gk:Ck is fromΦ thengk ≤ gl, wheregl is the label of a clause fromΓbase ,

because according to the step 2, when computing the label forgk:Ck some

clausegl:Cl ∈ Γbase had to be used.

(4) If there is more than one clause with the predicatep in the head, when we are

computing the label for the goal← p(a), then by recursive application of the

rules 2 and 3 we can state that lemma holds.

�

NOTE 3.3.25. Lemma 3.3.24 is applicable also to goals with a variable, but the proof

would be a bit complicated because of many math symbols in it. However, its skeleton

would be the same. Therefore we gave only simplier version of it.

32 3. DATA MINING LOGIC PROGRAMS

THEOREM 3.3.26. Let Γbase be a DMLP background base constructed according to

somer, ∆ and Γ. Let alsoΦ be a DMLP program andC = A ← B be a clause with

non-empty head and body. Then

Ξ(∆,Γ,Φ, C) ≤ G(r, C)

PROOF. From the definition 3.3.23 we have thatΞ(∆,Γ,Φ, C) = Ξ(∆,Γ,Φ,← A) ·
Ξ(∆,Γ,Φ, B1 ∧ · · · ∧ Bn). From the lemma 3.3.24 we have thatΞ(∆,Γ,Φ,← A) ≤
G(r,A) and∀i : Ξ(∆,Γ,Φ,← Bi) ≤ G(r,Bi). Finally from the note 3.3.20 we can

see that∀i : Ξ(∆ Γ ΦB1 ∧ · · · ∧ Bn) ≤ Ξ(∆,Γ,Φ, Bi). It is also easy to see that∀A :
|A(r,xA)|

|r| ≤ 1.

After this preparation the proof follows:

|A(r,xA)|
|r| ≤ 1 ≤ 1

|A(r,xA)|
|r|

/ · |A∧B(r,xA∪xB)|
|r|

|A(r,xA)|
|r| · |A∧B(r,xA∪xB)|

|r| ≤
|A∧B(r,xA∪xB)|

|r|
|A(r,xA)|

|r|
|A(r,xA)|

|r| · |A∧B(r,xA∪xB)|
|r| ≤ |A∧B(r,xA∪xB)|

|A(r,xA)|

From the definition 3.3.4 of the probability function and preparations at the beginning

of the proof, we finally conclude:

Ξ(∆,Γ,Φ,← A) · Ξ(∆,Γ,Φ, A ∧B) ≤ G(r,A) ·G(r,A ∧B) ≤ G(r,A← B)

This completes the proof. �

3.3.3. Semantics of DMLP.In this subsection we define distributionalL-interpretation

and distributionalL-model in the similar way as Muggleton does in [Mug 00] for SLPs.

DEFINITION 3.3.27. LetL be a first-order language andDp is a probability distri-

bution over ground atoms of the predicate symbolp in L. If I is a vector consisting of

one such distribution for every predicate symbolp ∈ L, thenI is called adistributional

L-interpretation(or simply interpretation).

If A ∈ L is an atom with the predicate symbolp andI is an interpretation, thenI(A)
is the probability ofA according toDp in I.

Let Φ be a DMLP program. LetLΦ be the smallest first-order language involving at

least one constant and a predicate symbol of Horn theoryP (Φ). In this case a distributional

LΦ-interpretation is called adistributional Herbrand interpretationof Φ.

Now we are finally prepared to define the distributional model of DMLP program.

DEFINITION 3.3.28. We say that an interpretationM is adistributionalL-model(or

simply model) of the given DMLPΦ with a background theoryΓ and a set of DMLP

examples∆, iff

∀a ∈ r : M(p(a)) ≥ Ξ(∆,Γ,Φ, p(a))

wherep is a predicate fromΓ anda is a tuple of terms from a databaser.

3.3. SEMANTICS 33

Let us take a closer look at the distributionalL-interpretation defined by the probability

functionG. At first sight our intuition says that it will define the real probability of atoms

which hold in the databaser. In the next definition we will define such interpretation.

DEFINITION 3.3.29. Let∆ be a set of DMLP examples associated with a relational

databaser andΓ be a DMLP background theory. We say thatIG is a natural database

interpretationiff IG is defined as follows:

∀p ∈def Γ,∀a ∈ r : IG(p(a)) = G(r, p(a)) = 1

Although the definition of such artificial interpretation, asIG surely is, seems to be

quite strange, it will be helpful in the next chapter, where we will define operators of DMLP

induction.

THEOREM 3.3.30. Let ∆ be a set of DMLP examples associated with a relational

databaser andΓ be a DMLP background theory associated with a DMLP programΦ. If

a interpretationIG is the natural database interpretation of DMLP programΦ it is also a

distributionalL-model of it.

PROOF. From the definition ofΞ we have that for every∆, Γ, Φ and a goalC,

Ξ(∆,Γ,Φ, C) ≤ 1. Requirements on the interpretationIG restrict only probability val-

ues of atoms containing tuplesa, which belong to databaser. Therefore we can say that

∀p ∈def Γ,∀a ∈ r : 1 = IG(p(a)) ≥ Ξ(∆,Γ,Φ, p(a)) ≥ 0. From that we can easily

see thatIG is a distributionalL-model of anyΦ induced from the given databaser and the

DMLP background theoryΓ. �

NOTE 3.3.31. According to the theorem 3.3.30, we can say that any natural database

interpretationIG is anatural modelof a databaser.

DEFINITION 3.3.32. LetL be a language. Letε ∈ R ∩ [0, 1] be a real value.L-

interpretationM is called anε-tight distributionalL-model(or simply anε-model) iff

∀A ∈ L : 0 ≤ IG(A)−M(A) ≤ ε

whereA is a ground atom containing only tuples of termsa belonging to the given

databaser. The real valueε will be calledtightnessof the modelM .

If M is anε-model ofΦ andM is Herbrand interpretation with respect toΦ, thenM

is anε-tight distributional Herbrand modelof Φ (or simplyHerbrandε-model).

DEFINITION 3.3.33. Letr be a database,Γ be a DMLP background theory of a DMLP

programΦ. We say that distributional interpretationIΞ is anestimated interpretation ofΦ
iff

∀p ∈def Γ,∀a ∈ r : IΞ(p(a)) = Ξ(∆,Γ,Φ, p(a))

NOTE 3.3.34. From the definition of distributionalL-model and the estimated inter-

pretation of a DMLP programΦ we simply have thatIΞ is also a distributionalL-model

of Φ. Therefore we can say thatIΞ is anestimated model ofΦ.

34 3. DATA MINING LOGIC PROGRAMS

DEFINITION 3.3.35. Letr be a database andΓ be a DMLP background theory. Sup-

pose thatΦ1 andΦ2 are DMLP programs constructed fromr andΓ. We will write that

Φ1 |=Ξ Φ2 iff every distributionalL-model ofΦ1, is also a distributionalL-model ofΦ2.

As we did in the definition of|=Ξ, we will write thatΦ1 |=Ξ,ε Φ2 iff every ε-model of

Φ2 is anε-model ofΦ1, too.

CHAPTER 4

Algorithms of DMLP induction

In this section we will propose and discuss algorithms and approaches to the DMLP

induction. At first we will speak more formally about a problem of a DMLP induction and

then we will propose different operators of DMLP induction.

4.1. Operators of DMLP induction

Now we are finally prepared to define the DMLP induction problem, what is the core

of this work.

DEFINITION 4.1.1. Letr be a database,Φ be a DMLP program,Γ be a DMLP back-

ground theory,Ξ be the evaluation function,G be the probability function andε ∈ R∩[0, 1]
be a real value. Let alsoIG be a natural model ofr andIΞ be an estimated model ofΦ.

OperatorIndDMLP (r,Γ,Ξ, G, ε) is calledoperator of DMLP inductioniff

(1) IndDMLP (r,Γ,Ξ, G, ε) = Φ
(2) r |=G Φ
(3) IΞ is an ε-tight distributionalL-model ofΦ (i.e. ∀p ∈def Γ,∀a ∈ r : 0 ≤

IG(p(a))− IΞ(p(a)) ≤ ε).

Search for appropriate DMLP programΦ by using some DMLP induction operatorIndDMLP

which will minimize the value ofIG(p(a))− IΞ(p(a)) for all a ∈ r andp ∈def Γ will be

called theDMLP induction problem.

NOTE 4.1.2. Point 2 in the definition 4.1.1 is the most important component of this

definition, while it defines a characteristics of an induced DMLP program. Point 3 just

strengths this requirement.

Verifying, whether the given DMLP programΦ in combination with the given DMLP

induction operatorIndDMLP leads to anε-tight estimated model ofΦ, can be quite com-

putionally time-consuming task when we are working with a large databaser and a large

DMLP background theoryΓ (because of the enumeration of all atoms in the form ofp(a),
for all p ∈def Γ anda ∈ r). From this reason we will also define weak DMLP induction

problem.

DEFINITION 4.1.3. Letr be a database,Φ be a DMLP program,Γ be a DMLP back-

ground theory,Ξ be the evaluation function and finally letG be the probability function.

OperatorIndweak
DMLP (r,Γ,Ξ, G, ε) is calledoperator of weak DMLP inductioniff

(1) Indweak
DMLP (r,Γ,Ξ, G, ε) = Φ

(2) r |=G Φ

35

36 4. ALGORITHMS OF DMLP INDUCTION

(3) Γ is the DMLP background theory ofΦ

Search for an appropriate DMLP programΦ by using some weak DMLP induction opera-

tor Indweak
DMLP will be called theweak DMLP induction problem.

NOTE 4.1.4. Point 3 in the definition 4.1.3 is unimportant, however it says us that

induced DMLP programΦ cannot be just any DMLP program, but that it must be DMLP

program which uses only predicates defined in the DMLP background theoryΓ and that it

describes databaser (because it uses DMLP background baseΓbase constructed from the

given set of DMLP examples∆ associated withr).

4.1.1. Relation betweenG, Ξ, IndDMLP and Indweak
DMLP . As it was sketched in the

text above a DMLP programΦ, which is the final product of a DMLP induction, can be

seen as some kind of a description of the given databaser. The functionG is able to

accurately label clauses of any DMLP program according to the databaser. However, this

can be quite time-consuming operation and in some applications of the DMLP induction

problem we do not need an accurate probability of a given formula. An estimation of

the probability of a formula can be sufficient for purposes of such application. For this

estimation we can use the evaluation functionΞ, which is also able to label any formula,

but there is a suspicion thatΞ will do that faster thanG. Algorithm ofΞ also does not need

to walk through the whole databaser.

These facts are used by a DMLP induction operatorIndDMLP . Although an operator

is rather more abstract notion, here we see it as an algorithm of construction of DMLP

program , model of which, estimated by an evaluation functionΞ, is as close as possible to

an ideal model, computed by the probability functionG. Still we do not restrict a DMLP

induction operator to be only such algorithm.

As it is obvious, in some cases it may not be possible to induce any non-trivial DMLP

programΦ from the givenr andΓ. The quality of the induced DMLP program is repre-

sented by the tightness of an estimated model.

Although the definition ofIndweak
DMLP can seem to be quite meaningless, such operator

of the DMLP induction can be usefull in cases, where an application does not depend on

the quality of the induced DMLP program. In the next text we will show applications

where usage of such induction operator is appropriate.

4.1.2. General design of operator of the DMLP induction.At the first sight we

could divide our approaches into two groups. Those based on precise computation from

the database and the group of estimative strategies. This straightly offers us two algorithm

designs according to the ideas described in the section 3.3. We can base a precise comput-

ing approach on the usage of the probability functionG and an estimative approach on the

evaluation functionΞ. In next two subsections we will present our ideas for development

of an efficient algorithm of the DMLP induction.

If we start a top-down analysis of an operator of the DMLP induction, we can see it

as an entity consisting of two modules. The first module will generate candidates for new

rules and the second one will label them and decide whether the resulting DMLP clause

satisfies constraints imposed on an output of such operator.

4.1. OPERATORS OF DMLP INDUCTION 37

Both proposed algorithms will use similar skeleton for proposing most suitable candi-

dates for induced rules based on the search for frequently occuring patterns in the database

and for inducing final DMLP clauses from these frequent patterns. For this purpose we

will adapt generic data mining algorithm for finding all frequent sets, described in the lit-

erature (i.e. [Man 97b]). At first we will describe the module for proposing candidates for

induced clauses and then we will discuss the second module for finalizing the work.

NOTE 4.1.5. While the conjunction∧ is a commutative operation, in the next text

we will treat all conjunctions as sets. Therefore we will use expressions likeC \ {A} for

simplicity.

Let us have a classP of patterns or sentences that describe properties of the given data.

Under thepatternwe mean any sentence, an expression or a statement which says some-

thing about properties of the given data set. In our case we will use the syntax of DMLP

clauses to encode such patterns. The task can be described as a computation whether the

given pattern (clause)p ∈ P is frequent enough to produce an interresting rule. As Mannila

claims in [Man 97b], generic data mining task is to find the set

PI (r,P) = {p ∈ P|p occurs sufficiently often inr andp is interesting},

wherePI is a set of all interesting and frequent patterns andr is a database.

We will adapt this formalism for our purposes. Letr be a relational database andΓ be

a DMLP background theory. As a class of all patterns describing properties of the database

r according to the DMLP background theoryΓ, we will use the setΓ∗ of all expressions, in

the form of conjunction, which we can produce from expressions of the formp(x), where

p ∈def Γ andx is a variable ranging over tuples of databaser. Let us assume, that there

exists a binary relation≺, which defines partial ordering over the expressions ofΓ∗. We

will view our task as the problem of finding the sentences inΓ∗ that are “sufficiently true”

in the data. At this step we will not care about other aspects of induced rules, which can

make them interesting enough to manipulate them later.

The algorithm 3 is based on the claim that if we find a frequent expressions, all of its

subexpressions must be frequent and vice versa.

In the algorithm 3, we use three sets of expressions.Tested is the set of all expres-

sions which we have already considered,Candidates is the set of possible candidates for

frequent patterns in the next step and finallyFreqPatt is the set of frequent conjunctions,

already found. In this algorithm we start from atomic expressions, which are the heads of

selections defined inΓ. The relation≺ is the relation of generalisation. As it is obvious,

(A ≺ B) ⇐⇒ (∀C ∈ B ⇒ C ∈ A), whereA andB are conjunctions of atomic expres-

sionsC = p(x) ∈ Γ∗ in the first step of the algorithm 3 (i.e.C stands for a member of

such conjunction).

The only undefined symbol is the functionEstimateconj (r,A). This is a function

of estimation of thefrequencyof the given conjunctionA. This is important difference

38 4. ALGORITHMS OF DMLP INDUCTION

Algorithm 3 DMLP FFC - Finding all frequent conjunctions (adaptation of FFP algorithm
from [Man 97b]).

Tested = ∅
FreqPatt = ∅;
Candidates = {p(x)|p ∈def Γ};
while Candidates 6= ∅ do

for eachA ∈ Candidates do
if Estimateconj (r,A) > treshold then

FreqPatt = FreqPatt ∪ {A}
else

Tested = Tested ∪ {C ∈ Γ∗|C ≺ A};
end if
Candidates = Candidates \ {A}
Candidates = Candidates ∪ {C ∈ Γ∗|C ≺ A ∧ C 6∈ Tested};
Tested = Tested ∪ {A};

end for
end while

between our two proposals for an DMLP induction operator. We will discuss this function

more in subsections 4.1.3 and 4.1.4.

The algorithm 3 works simply. If it, during the computation, finds an expression which

is frequent enough (i.e. its estimation of the frequency by the functionEstimateconj is

high enough), it adds all the expressions, which are more special than the expression found

and it is subexpression of each of them, to the set of possible candidates for frequent

conjunctions. If the actually tested expression is not frequent enough, we have to exclude

all more specialised expressions from the future testing, because these have no more chance

to be frequent.

Now we are prepared to give a description of the second module which computes

clauses induced by an operator of DMLP induction.

Algorithm 4 DMLP CIR - computation of induced rules

Φ = ∅
compute the setFreqPatt of all frequent conjunctions;
for eachC ∈ FreqPatt do

for each memberA of the conjunctionC do
CA = (A← C \ {A})
if Estimaterule(r, CA) > treshold then

Φ = Φ ∪ {Estimaterule(r, CA):CA};
end if

end for
end for

We can see that the algorithm 4 is quite simple. It tries to create all possible range

restricted Horn clauses from all frequent conjunctions and computes an estimation of the

probability of such clauses. If the label is sufficiently high it adds such a clause to the

induced DMLP programΦ. The only undefined symbol, alike above in the algorithm 3,

is an estimation functionEstimaterule . The implementation of this function is again the

4.1. OPERATORS OF DMLP INDUCTION 39

main difference between our two proposals which we will discuss in the subsections 4.1.3

and 4.1.4.

As Mannila in [Man 97b] claims, it is possible to modify the implementation of this

generic algorithm by usage of hill-climbing searches for the best conjunctions in the mod-

ule implemented by the algorithm 3. As it is obvious, the architecture of our generic

algorithm is very similar to the generic data mining system architecture. These facts will

be discussed later in the section 5.

Customization of the generic algorithms 3 and 4 lies in the customization of the first

estimation functionEstimateconj (r,A), which estimates the frequency of the given con-

junctionA, and the second estimation functionEstimaterule(r, C), which estimates the

probability of the given clause (or the rule)C. By implementing these two functions in

different ways we achieve two different algorithms with different complexity properties.

Please note that we use the definition of weak DMLP induction operator (we use the defi-

nition of weak induction operator defined in the definition 4.1.3).

NOTE 4.1.6. Generic algorithm constructed from algorithms 4 and 3 with functions

Estimaterule andEstimateconj unimplemented will be called thegeneric skeletonof a

DMLP induction operator.

4.1.3. Precise approach using the probability functionG. In this subsection we

will define weak DMLP induction operatorIndG(r,Γ, G, ε).

DEFINITION 4.1.7. Letr be a relational database,Γ be a DMLP background theory,

G be the probability function and finallyε ∈ R∩ [0, 1] be a treshold value. LetA be a con-

junction of predicates defined inΓ andC be a range restricted definite clause constructed

from predicates defined inΓ.

We say that a DMLP induction operatorIndG(r,Γ, G, ε), which uses the generic

skeleton, isprecisewhen it implements estimation functions as follows

Estimateconj (r,A) = G(r,A)

Estimaterule(r, C) = G(r, C)

THEOREM 4.1.8. Let Φ be a DMLP program induced by the precise operatorIndG

andΓ be its DMLP background theory. Then the operatorIndG is the weak DMLP induc-

tion operator.

PROOF. Proof of this theorem is quite straightforward. We only need to check whether

each rule induced by the operatorIndG satisfies requirements imposed on it by the defini-

tion of the weak DMLP induction operator.

The first and the third point of the definition are satisfied from the definition of operator

IndG. We only need to check the satisfaction of the second point of the definition 4.1.3

(i.e. whetherr |=G Φ). From the definition 3.3.9 we have thatr |=G C ⇐⇒ G(r, C) ≥ g,

whereg:C ∈ Φ is a DMLP clause. But from the definition 4.1.7 of operatorIndG we have

that this operator assigns to each clause labelg = G(r, C), thereforeg = G(r, C) =⇒
r |=G C. This completes the proof. �

40 4. ALGORITHMS OF DMLP INDUCTION

It is possible to implement the precise weak DMLP induction operator straightfor-

wardly by usage of the probability functionG, which we can implement as a query to the

databaser if it would be possible. Under additional strong restrictions on the syntax of a

DMLP program we are able to express these queries in SQL. This will be discussed later.

NOTE 4.1.9. The computation of such query can lead to the recursive computation,

therefore we have to additionaly constrain the form of clauses used as an input, or we can

restrict the form of the DMLP background theoryΓ. This note applies to the proposal in

the section 4.1.4, too.

Induction operator as we defined it in the definition 4.1.7 is as precise as possible ac-

cording to the given probability functionG. It uses the computation from the database to

label an input clause. As Mannila claims in [Man 97b], naive implementations of such op-

erators can lead to slow operations for large databases. However, outputs of this approach

are precise and terminal. There is nothing to improve on them.

4.1.4. Estimative approach using the evaluation functionΞ. The Weak DMLP in-

duction operatorIndΞ(r,Γ,Ξ, ε), which uses the evaluation functionΞ, represents an es-

timative approach to a DMLP induction operator.

DEFINITION 4.1.10. Letr be a relational database,∆ be the set of DMLP examples

associated withr, Γ be a DMLP background theory of a DMLP programΦ. Let alsoΞ
be the evaluation function andA be a conjunction of predicates defined inΓ andC =
Chead ← Cbody be a range restricted definite clause constructed from predicates defined

in Γ.

We say that a DMLP induction operatorIndΞ(r,Γ, G, ε), which uses the generic

skeleton, isestimativewhen it implements the estimation functions as follows

Estimateconj (r,A) = Ξ(∆,Γ,Φ, A)

Estimaterule(r, C) = Ξ(∆,Γ,Φ, C)

THEOREM 4.1.11. Let r be a relational database,Φ be a DMLP program,Γ be its

DMLP background theory,∆ be the set of DMLP examples associated withr and finallyΞ
be the DMLP evaluation function. Then the estimative operatorIndΞ is the weak DMLP

induction operator.

PROOF. Again we only need to prove thatr |=G Φ if we label clauses inΦ by usage

of the estimative functionΞ. Proof of this straightforwardly follows from the proof of the

theorem 3.3.26 on the page 32. �

As it was already sketched in the subsection 4.1.1, the definition of the estimative

induction operatorIndΞ is the main result of this chapter. In the theorem 4.1.11 we proved

that the simple induction operator which uses the estimative functionΞ as the core of its

computation is correct according to the definition of the simple induction operator. We

designed this operator with the aim to produce an efficient method for an induction of

DMLP programs. The estimative induction operator is not as precise as precise induction

4.2. COMPLEXITY OFIndG AND IndΞ 41

operators are, but we hope that under tight constraints on the syntax of DMLP programs

they can produce quite good DMLP programs.

Finally let us discuss the complexity of induction operators proposed in the subsec-

tions 4.1.3 and 4.1.4.

4.2. Complexity ofIndG and IndΞ

For the proper specification of a complexity of any of given induction operators, we

need to look into the generic algorithms of DMLP induction. These are the algorithm FFC

(3) for finding all frequent conjunctions, and the algorithm CIR (4) for the final computa-

tion of induced rules from these frequent conjunctions.

Both algorithms, FFC as well as CIR use functionsEstimateconj andEstimaterule .

Therefore we will at first analyze these functions.

In the case of the precise DMLP induction operatorIndG both of these functions use

the probability functionG to compute a probability of the given clause or the conjunction.

If we treat the functionG as an algorithm to compute this probability, we will find that

it needs to walk through the whole databaser to find out for how many tuples, or rows,

the given expression holds. However, before this verification it needs to compute an SLD

refutation of the given expression in DMLP background theoryΓ, what is some usuall

logic program, to find all basic equalities which it needs to verify in the database. We

need to compute an SLD refutation only fromΓ because in the DMLP background theory,

there is the only precise definition of each predicate used in any clause or a conjunction.

While the complexity of the computation of such SLD refutation strongly depends on the

syntactic constraints onΓ, we will not even estimate it. We just have to note, that in the

case, when the given DMLP background theoryΓ will contain recursive clauses, or when

it allows recursive computation of the given logic program, it even may not be possible to

compute any SLD refutation. Therefore we strongly suggest to impose as strong syntacic

constraints on it, as it is possible. For example, it is well-advised to support only hierarchic

logic programs1 as DMLP background theory. It seems to suit all “normal” requirements

on Γ. In this case, the computation of an SLD refutation fromΓ can be linear according

to the number of predicates defined inΓ. We will denote it by the symbol|Γp|. This is

the size of the setΓp = {p|p ∈def Γ}. We will use the symbolOSLD for complexity of

computation of an SLD refutation fromΓ in next paragraphs.

Now we can estimate the complexity of the probability functionG asO(OSLD · |r|).
As it is obvious, if we restrict the form of a DMLP background theoryΓ, the most important

element in the given expression will be|r|. Therefore we can say that the final complexity

of the probability functionG is

OG = O(|Γp| · |r|)

When we speak about the estimative DMLP induction operatorIndΞ, which uses the

evaluation functionΞ as the core of its calculation, we are in quite different position than in

1By this we mean programs without recursion. For more information on hierarchic logic programs refer to
[Llo 87] page 110.

42 4. ALGORITHMS OF DMLP INDUCTION

the case of the precise operator. This function does not need to walk through the database

to test every tuple in the databaser whether it belongs to the part of the database defined

by the given clause or not. It only needs to compute a DMSLD refutation fromΓbase ∪ Φ,

whereΓbase is the DMLP background base of an induced DMLP programΦ. Unlike the

computation by the functionG, the evaluation functionΞ needs to compute an estimation

of the probability of the given expression from DMLP programs which are in this case

Γbase andΦ. The complexity of such computation is higher than the complexity of the

computation of an SLD refutation fromΓ. For computing any DMSLD refutation we need

to enumerate all SLD refutations of the given expression and find the one, which maximizes

its value of the probability. The most important element of this is the complexity of the

computation of an SLD refutation. Again we will not even estimate complexity of it. We

believe that under such strong syntactic constraints on a DMLP background theoryΓ, as

the constraint of hierarchy is, it is possible to treat the complexity of the functionΞ as

OΞ = O(c · |Γp|) = O(|Γp|)

Now let us take a closer look on the generic algorithm FFC. As it is obvious, in the

worst case it has to walk through all members of the setΓ∗ of all expressions, in the form

of conjunction, which are possible to produce from expressions of the formp(x), where

p ∈def Γ. Size of the setΓ∗ is |Γ∗| = n!. Therefore an estimation of the complexity is

in the worst caseO(n!). This is quite high value of complexity and shifts the algorithm

FFC into the class of algorithms with very high complexity. Even we can say that the FFC

problem is NP hard. In the worst case, there is no other way, than to enumerate all possible

candidates to frequent conjunctions, however we feel that in an average case it is not that

bad. We will not precisely estimate the complexity of the FFC algorithm, because it is not

crucial for this work. We believe that by usage of heuristics for particular application it is

possible to reduce the complexity of FFC. Even in some situations we can use user driven

(or semi-automatic) proposing of candidates for new DMLP rules, or frequent conjunctions

and by that reduce the complexity of FFC algorithm. We will discuss this topic later.

While the algorithm FFC uses the estimation functionEstimateconj we need to in-

volve also this function into our game. For each candidate for frequent conjunction we

need to compute the value ofEstimateconj , therefore we can fix the complexity of FFC

algorithms of both DMLP induction operators on

IndG IndΞ

OG
FFC = O(n! ·OG) = O(n! · |Γp| · |r|) OΞ

FFC = O(n! ·OΞ) = O(n! · |Γp|)

The algorithm CIR, is simpler than the FFC algorithm. It only computes for each fre-

quent conjunction its probability. We meet here with the estimation functionEstimaterule ,

what is again the function based on either the probability functionG in the case of precise

DMLP induction operators, or the evaluation functionΞ in the case of an estimative ap-

proach to the DMLP induction. In fact the complexity of the CIR algorithm is depending

on the number of frequent conjunctions and their sizes. The maximal possible size of the

frequent conjunction is the same as the number of predicates defined in the given DMLP

4.3. HYBRID APPROACHES TO DMLP INDUCTION 43

background theoryΓ. It is equal to|Γp|. Number of frequent conjunctions is at most

|Γ∗| = n!. However, in an average case this number will be much, much lower. Finally the

algorithm must use the estimation functionEstimaterule which depends on the complexity

either of the functionG, or Ξ. Therefore final complexity of the CIR algorithm for both

DMLP induction operators will be:

IndG IndΞ

OG
CIR = O(n! · |Γp|2 · |r|) OΞ

CIR = O(n! · |Γp|2)

In both operators we can use these specialised generic algorithms one after another or

we can integrate the CIR algorithm into the FFC algorithm. Although it will not change

the final complexity, by this we can speed up the whole process of the DMLP induction.

4.3. Hybrid approaches to DMLP induction

Likewise Mannila claims, naive implementations of generic algorithms usually leads

to slow operations. Therefore, as it was already said, it is necessary to search for an appro-

priate heuristics which will improve the efficiency of the DMLP induction. Here we will

give few naive proposals to improve it. We will not do more on this field, because it is not

the main aim of this work.

While the usage of the evaluation function for the estimationEstimaterule can pro-

duce quite inaccurate, or too low, probabilities of DMLP clauses in the DMLP program

Φ, we can try to mix both approaches to the DMLP induction to produce another DMLP

induction operator. We will call it the hybrid DMLP induction operator and denote it by

the symbolIndΞ/G .

DEFINITION 4.3.1. Letr be a relational database,∆ the set of DMLP examples as-

sociated withr, Φ be a DMLP program with a DMLP background theoryΓ. Let alsoG

be the probability function andΞ be the evaluation function Let finallyA be a conjunction

of predicates defined inΓ andC = Chead ← Cbody be a range restricted definite clause

constructed from predicates defined inΓ.

We say that a DMLP induction operatorIndΞ/G(r,Γ, G, ε), which uses the generic

skeleton, isestimativewhen it implements the estimation functions as follows

Estimateconj (r,A) = Ξ(∆,Γ,Φ, A)

Estimaterule(r, C) = G(∆,Γ,Φ, C)

By mixing the probability functionG and the evaluation functionΞ into the one DMLP

induction operator we have now an operator which produces DMLP programs with proba-

bilities of clauses as precise as possible, still for proposing new clauses runs on the ground

of the evaluation functionΞ. The complexity of this weak DMLP induction operator lies

somewhere between complexities of operatorsIndG andIndΞ. We can say that

OIndΞ ≤ OIndΞ/G
≤ OIndG

44 4. ALGORITHMS OF DMLP INDUCTION

Another approach to improve the efficiency and accuracy of DMLP induction operator

is to replace the FFC algorithm by an intervention of the user. If the user will propose new

clauses, or just frequent sets, the CIR algorithm will serve as an evaluator of such proposals.

By this we can produce, in some applications, the DMLP induction operator which will be

more efficient and more reliable in the process of DMLP induction.

Proof of the statement, that operatorIndΞ/G is the correct weak DMLP induction

operator would be straightforward and would be based on the proof of the theorem 4.1.8.

4.4. ε-tightness and DMLP induction

At the end of this chapter let us discuss the types of DMLP induction operators defined

in subsections 4.1.3 and 4.1.4. Please note that theorems 4.1.8 and 4.1.11 are formulated

only for weak DMLP induction operators. An ideal goal is to find an operator of DMLP

induction, which will use the evaluation functionΞ and the theorem aboutε-tightness for

such an operator will be proved. Unfortunately we were not able to prove this theorem for

the precise induction operatorIndG nor for the estimative operatorIndΞ. Even we doubt

whether it is possible. We suspect that some bad-looking result could be proven about

impossibility of proving such theorem. This is the reason why we defined strong version

of DMLP induction, but all our proposals for induction operators were based only on the

weak version of the DMLP induction operator.

CHAPTER 5

Usage of DMLP

We developed the theory of Data Mining Logic Programs with the primary aim to use

these programs as condensed representations. In the first sections of this chapter we will

discuss exactly this topic. In the next sections we will more speculate. These sections will

be quite informal and please treat them as such. However we feel that these speculations

are not too crazy and maybe topics discussed there could be inspiring for some kinds of

applications.

5.1. Condensed representations

As it was discussed in the subsection 2.2.5, one of the the biggest open issues in the

field of data mining is the topic of condensed representations. As it was already said,

condensed representation is a data object (structure) which represents the given underlying

database itself, describes it approximately good and the most important point is, that it

makes it possible to answer some probabilistic queries more efficiently than by looking

into the database.

Here we give Heikki Mannila’s definition of the condensed representation cited from

[Man 97b]:

DEFINITION 5.1.1. Given a data collectiond ∈ D, and a class of patternsP, a con-

densed representation ford andP is a data structure that makes it possible to answer

queries in the form of“How many times doesp ∈ P occur ind?” approximately correctly

and more efficiently than by looking atd itself.

We think that the Data Mining Logic Programs are suitable candidate for condensed

representations, because they describe the database according to some given DMLP back-

ground theoryΓ, even it is possible to compute answers from DMLP programs to appro-

priate questions efficiently by using the evaluation functionΞ.

In fact, a set of DMLP clauses can be viewed as a set of sentences of the type:“If the

head of the clause holds, then the probability that the body of it holds, too, is at most the

value of its label.” This allows us to chain such clauses into sequences (these are used in

DMSLD refutations) of resolvents, which say something like:“If the first member of the

chain holds, then the probability that also the last member of it holds, too, is not greater

than the product of labels in the chain.”As it is obvious, this probability for a single clause

is similar to the confidence of an association rule used in the data mining. Confidence can

be seen as the probability that the head of the clause holds when its body holds for sure.

The difference between these two terms is simple. In fact, both of them are conditional

probabilities, but they are complementary to each other. Let us have a clauseC = A← B.

45

46 5. USAGE OF DMLP

The confidence is represented by the conditional probabilityP (A|B) and the probability of

the given DMLP clause isP (B|A). For the verification of this claim compare the equation

P (B|A) = P (A∩B)
P (A) and the definition of probability of the DMLP clause|A∧B(r,xA∪xB)|

|r| .

Even from Bayes theoremP (B|A) = P (B)·P (A|B)
P (A) we are able to express the confidence

from the probability of DMLP clause. Note that values of probabilitiesP (B) andP (A)
are known in the process of computation of the label of the DMLP clause by the evaluation

functionΞ.

Many times in the previous chapter (3) we mentioned that the induction of DMLP

programs with the evaluation functionΞ is probably more efficient than the induction of

DMLP programs by usage of the probability functionG. The main result is in the section

4.2 about the complexity of the DMLP induction operators. For clever implementations of

generic algorithms, the most time-consuming part of them would be the raw walk through

the database when we are using the probability functionG in the core of the algorithm.

With usage of the evaluation functionΞ, this element of the complexity can be reduced to

the minimum at the cost of loss of precision. Still, such DMLP program is able to help

in computation of the label of newly induced clause. This mechanism is described in the

definition 3.3.23 and proven that it works in the theorem 3.3.26. This is exactly the task

which has to be handled by condensed representations.

Note that such structures like condensed representations could be used to compress

the information in the database. Similar topic for Stochastic Logic Programs is discussed

by Muggleton in [Mug 00].

For these reasons we afford us to propose DMLP programs as a suitable candidate for

condensed representations in data mining.

5.2. Probabilistic symbolic induction

As it was said in the introduction to this chapter, this section will be dedicated to an

informal discussion of other possible applications of DMLP programs. All of these propos-

als will have one thing common. While DMLP programs can be seen as generalisation of

logic programming, we can say that they are situated in the field of symbolic approaches to

artificial intelligence. Such approaches have advantage of possibility of translation of their

structures into the mathematical logic and then to the natural human language. Afterwards

we are able to articulate them. Subsymbolic approaches usually do not have this property.

This feature will be used in next discussions.

5.2.1. Extraction of rules from neural networks. Neural networks are biologically

inspired data structures and algorithms which allow us to simulate kind of neural activity

and by this help us to solve some non-trivial problems. We will not discuss in this work,

details and the theory can be found in many books (e.g. [Hri 98]).

The main feature of neural networks is that we are able to learn them from examples.

If we have for each input of the training set also the output of it, we can force the neural

net to learn to compute for any similar input the same output. We can see neural networks

as a data structures which containgeneralisationof the training set. Learning of neural

networks can be seen as the process of induction of this generalisation.

5.2. PROBABILISTIC SYMBOLIC INDUCTION 47

Neural nets give us quite good results in many fields of their application. Still we

are not able to articulate, or explain why the net computed the result which it gave for

given input. We just know that it is approximately corect. Our idea is to use the induction

of DMLP programs for the same task, or in the task of extraction of rules from neural

network.

Let us have a simple neural network, which works as a clasifier of input data into

classes of outputs. For simplicity let input data be tuples over domainsD1, · · · , Dn and

output be a binary vector with the only1 in it. Let us have a relational databaser which

contains a training set as joined tuple of input columns and output part. If we have suitable

DMLP background theoryΓ, which allows a DMLP induction operator and an induced

DMLP program to work with columns, then we are able to run an DMLP induction oper-

ator onr andΓ to produce a DMLP programΦ. This program will contain probabilistic

statements in the form of clauses from which we would be able to extract partial informa-

tion about probabilistic rules which hold in the network.

We can also set this idea on the top of its head by applicating it to some unknown

neural net. As it was already said, neural network can be seen as a black box which

somehowcomputes the result from the given input. Let us have some unknown neural

network and the task is to find the result computed by it as an output. Again we can

produce the set containing stochastic input data, let neural network compute the result for

each member of it and finally let us run DMLP induction over this set of examples. The

result of such induction will be some probabilistic description of relations between inputs

and outputs. This may help by further investigation of the given unknown neural network.

Because of its properties, DMLP induction seem to be suitable to solve many tasks

which are solved by neural networks, still while we did not develop any serious implemen-

tation of DMLP induction, we do not want to directly claim this. We only hope, that this

approach can help in these tasks. Please note that this is only informal speculation.

5.2.2. Hidden Markov Models. As Muggleton in [Mug 00] claims, Stochastic Logic

Programs were introduced originally as a way of lifting stochastic grammars to the level

of first order Logic Programs. Later it was shown that SLPs can be used to represent also

Hidden Markov Models and undirected Bayes’ nets. While DMLP programs share many

properties with SLPs, which were the inspiration for it, we afford us to claim that DMLP

programs can be used in fields where Hidden Markov Models are used, too. Again, simi-

lary to neural networks, Hidden Markov Models are learned or constructed automatically

from a training set to produce intended results.

Hidden Markov Models were successfully used for example in the field of speech

recognition. Therefore we hope that DMLPs would have application in relative fields too.

Still note that this is only speculation, because, as we already mentioned above, there

is no implementation of any DMLP induction operator, even we doubt whether such appli-

cation will give something new in this field, or whether it will fasten some process. By the

given speculation we just wanted to show, another possible field of application of DMLP.

CHAPTER 6

Conclusions

In the core of this work we proposed a framework called DMLP. It was strongly in-

spired by Stochastic Logic Programs, but the goal was to develop a structure suitable to

serve as the condensed representation in inductive databases in the field of Data Mining to-

gether with the iterative mechanism of using these structures to induce more sophisticated

condensed representations. By this we can generalise that the main theme of this work is

usage of Logic Programming and approximative, or probabilistic reasoning in Data Min-

ing.

This work is only student diploma thesis and as such it probably contains many bugs

and has many limitations. Later we will discuss few open problems and directions of

possible further development. The main doubt is usefulness of this work. Our feeling is

that although this is an peripheral theme of the field of data mining, there are streams in the

research around KDD and DM which have similar background and attack similar problems

(especially works of Luc de Raedt, Heikki Mannila, Manfred Jaeger et al.).

6.1. Further development and open problems

Finally we give list of open topics raising from this work and possible further devel-

opments of it.

(1) Extend the DMLP theory to handle function symbols and more complicated do-

mains (not only binary tables).

(2) The theory of DMLP works only with single relational table (database). One of

simple extensions would be handling number of tables (databases).

(3) Revisions of DMLP programs can be interesting issue. If we would like to join

two inductive databases (raw data + DMLP representation of the database) we

need to join DMLP programs too.

(4) Develop theory and proove theorems about comprimation of the database by

inducing DMLP program. This probably will be lossy compresion and there is

a need to express the loss ratio (starting point should be Muggleton’s work on

U-learning in [Mug -]).

6.2. Contributions

At the end, let us finally summarize main contributions of this work. As the main

result of this work we see the original framework for condensed representations in induc-

tive databases which is able to hold sentences in the specific clone of logic programming

49

50 6. CONCLUSIONS

language suitable to express approximative and statistical properties of the given relational

database.

Glossary of used abbreviations and symbols

CIR - Computations of Induced Rules

DM - Data Mining

DMSLD - Data Mining SLD

DMLP - Data Mining Logic Program

FFC - Finding Frequent Conjunctions

FFP - Finding Frequent Patterns

LP - Logic Programming

KDD - Knowledge Discovery in Databases

SLD - Selection function Linear resolution for Definite clauses

SLP - Stochastic Logic Program

∆ - the set of DMLP examples

Γ - DMLP background theory

Γbase - DMLP background base

Φ - induced DMLP program

r - database (relational table)

R - the relational schema

Ξ - evaluation function

G - probability function

IndΞ - estimative DMLP induction operator

IndG - precise DMLP induction operator

IndΞ/G - hybrid DMLP induction operator

51

Bibliography

[Agr 02] Agrawal, R.Potentials and Challenges of Data Mining.Invited talk at EDBT 2002, workshop DTDM-

02, 2002

[Bac 90] Bacchus, F.Probabilistic Belief Logic.In proc. of ECAI-90, pages 59-64, 1990

[Hri 98] Hristev, R. M.The ANN Book.Edition 1, 1998

[Imi 95] Imielinski, T. Invited talk at KDD-95, 1995

[JMW 96] Jaeger, M., Mannila, H., Weydert, E.Data Mining as Selective Theory Extraction in Probabilistic

Logic. In SIGMOD’96 Data Mining workshop, 1996

[Llo 87] Lloyd, J. W.Foundations of Logic Programming.Springer-Verlag, 2nd edition, 1987

[Man 97a] Mannila, H.Inductive Databases and Condensed Representations.In proc. International Logic Pro-

gramming Symposium ’97, pages 21-30, 1997

[Man 97b] Mannila, H.Methods and Problems in Data Mining.In proc. ICDT’97, 1997

[Mug 96] Muggleton, S.Stochastic Logic Programs.In proc. 5th International Workshop on Inductive Logic

Programming, pub. DCS Katholieke Universiteit Leuven, ed. de Raedt, L., page 29, 1995

[Mug 00] Muggleton, S.Learning Stochastic Logic Programs.In proc. AAAI2000 Workshop on Learning Sta-

tistical Models from Relational Data, 2000

[Mug -] Muggleton, S.Statistical Aspects of Logic Based Machine Learning.

[MuR 94] Muggleton, S., de Raedt, L.Inductive Logic Programming: Theory and Methods.Journal of Logic

Programming, vol. 19/20, pages 629-679, 1994

[Sef 00] Šefránek, J.Inteligencia ako výpočet.pub. IRIS, 2000

53

