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Abstract AgentSpeak(L), together with its implementation Jason, is
one of the most influential agent-oriented programming languages. Be-
sides having a strong conceptual influence on the niche of BDI-inspired
agent programming systems, Jason also serves as one of the primary tools
for education of and experimentation with agent-oriented programming.
Despite its popularity in the community, relatively little is reported on
its practical applications and pragmatic experiences with adoption of the
language for non-trivial applications.

In this paper, we present our experiences gathered during an experiment
aimed at development of a non-trivial case-study agent application by a
novice Jason programmer. In our experiment, we tried to use the pro-
gramming language as is, with as few customisations of the Jason inter-
preter as possible. Besides providing a structured feedback on the most
problematic issues faced while learning to program in Jason, we inform-
ally propose a set of ideas for solving the encountered design problems
and programming language issues.

1 Introduction

Jason [8] is an agent-oriented programming system implementing the agent
programming language AgentSpeak(L) [19]. AgentSpeak(L) was proposed as a
theoretical language, an articulation and operationalization of the Bratman’s
Belief-Desire-Intention architecture [9]. Jason is nowadays one of the popular
approaches in the group of theoretically-rooted agent-oriented programming lan-
guages (APLs). Some other members of this group include also 24PL, 3APL,
GOAL, Golog, Jazzyk, etc. (for an overview consult e.g., [5,7,6,16]). Building on
the foundations of formal logics, these languages serve as vehicles for study of
both theoretical issues in agent systems (language features, generic program-
ming constructs, reasoning, coordination, etc.), as well as practical aspects of
their design and implementation (e.g., modularity, design, debugging, or code
maintenance). To enable program verification, or model checking for more rigor-
ous reasoning about agent programs, Jason, together with the majority of APLs



in this class, puts a strong emphasis on their rooting in computational logic
and rigorous formal semantics. Unlike the more pragmatic approaches, such as
Jadez, or JACK (cf. [18,20]), these APLs were designed from scratch. While
providing the advantages we have discussed, this has also created serious short-
comings with respect to the practicality of their use, such as those discussed in
this paper.

On one hand, pragmatic problems of agent design and implementation, such
as code modularity, are gaining a more prominent role in the research com-
munity. On the other hand, a feedback on practical use of such APLs in more
elaborated settings is rather scarce. AgentSpeak(L) often serves as a basic APL
for various extensions and integration with 3rd party tools. However, little is
reported on its practical applications and experiences with its use, be it in more
involved applied research projects, or in more significant close-to-real-world ap-
plications (cf. also the Jason related projects website [14]). To date, the only
report on pragmatic issues of Jason in a more involved context is the recent
study by Madden and Logan [15] in which the authors deal with problems of
modularity in their application and in turn propose corresponding improvements
of the language itself. At the same time, to our knowledge, the most elaborated
applications of the Jason programming system include the entries to the Multi-
Agent Programming Contest, which already witnessed eight submissions in years
2006-2010 altogether by three independent research groups [2,1]. The reports on
development of these applications do not include a discussion of practical issues
of an agent program implementation, but rather focus on the analysis and design
aspects with an emphasis on the multi-agent coordination.

In this paper we discuss our experiences gathered during an experiment aimed
at developing a non-trivial case-study multi-agent application by a novice Jason
programmer. The main goal of the undertaking was an exploration of basic
problems in multi-agent coordination in a simple simulated environment using
the Jason programming system. In particular, we have implemented an applic-
ation involving a team of eight agents collaboratively exploring a grid maze
and subsequently traversing the environment while cooperatively maintaining a
formation. Our experiment aimed at a naive, and relatively conservative use of
the Jason programming system. We tried to use the programming language as
is, with as few customisations of the Jason interpreter as possible. In contrast,
most involved example applications published at the Jason project website [14]
and submissions to the AgentContest employ extensive customisations of the
Jason interpreter as an inherent part of the system implementation.

The contribution of the presented paper is twofold. Firstly, we provide a
structured feedback on the most problematic issues faced while learning to pro-
gram in Jason. Secondly, without an ambition to provide conclusive technical
solutions, we rather informally propose a set of ideas aimed at solving the dis-
cussed design problems and programming language issues.

After a brief introduction of AgentSpeak(L) and Jason in Section 2 the sub-
sequent Section 3 provides a description of the implemented case-study. In Sec-
tion 4, the core of this paper, we discuss a selection of problems we have faced



during the experiment. For each discussed issue, we firstly motivate and ex-
plain the problem on the background of the introduced case-study application,
or its extension, and then we discuss possible solutions. The topics covered in
the discussion include implementation of a simple loop design pattern, hand-
ling interactions between several plans and interruptibility thereof, and usage
of mental notes as local variables in plans. We also discuss two technical issues
arising from implementation of agents embodied in dynamic environments and
the unclear boundary between Jason programming language itself and its un-
derlying customisation API in Java. We conclude the paper by final remarks in
Section 5.

2 AgentSpeak(L) and Jason

AgentSpeak(L) is a theoretical agent-oriented programming language introduced
by Rao in [19]. It can be seen as a flavour of logic programming implementing the
core concepts of the BDI agent architecture, a currently dominant approach to
design of intelligent agents. Structurally, an AgentSpeak(L) agent is composed of
a belief base and a plan library. The belief base, essentially a set of belief literals,
provides the initial beliefs of the agent. The plan library serves as a basis for ac-
tion selection, as well as for steering the evolution of the agent’s mental state over
time. The plans of the agent are rules of the form event : context < plan.
The rule denotes a plan, a sequence of basic actions and/or subgoals, which is ap-
plicable in reaction to the triggering event if the context condition, a conjunction
of belief literals, is satisfied.

AgentSpeak(L) agents are reactive planning systems which react to events
occurring in their environment, or are generated as subgoals internally by the
agent as a result of a deliberative change in its own goals. The dynamics of
the agent system is facilitated by i) instantiation of abstract plans as intentions
relevant in particular contexts, and subsequently ii) gradual execution of the in-
tentions leading to their subsequent decomposition into more and more concrete
subgoal invocations and finally atomic action executions. In each deliberation
cycle, such an agent performs the following sequence of steps:

1. perceive the environment and update the belief base accordingly,

select an event to handle,

retrieve all relevant plans,

select an applicable plan and update the intentions accordingly,

select an intention for further execution,

execute one step of an intention and modify the intention base and the set
of events accordingly.

S e

Jason is a Java-based programming system implementing AgentSpeak(L) with
various extensions. It also includes an integration with several multi-agent mid-
dleware platforms such as JADE, or Moise+. In its original incarnation, Agent-
Speak(L) is underspecified in several points of the deliberation cycle. In par-
ticular, in how exactly the three selection functions Sg, Sp and Sz, denoting



the selection of events, applicable plans and intentions respectively, are imple-
mented. In Jason, these are customizable functions that can be implemented as
Java methods. Furthermore, AgentSpeak(L) disregards the implementation de-
tails of agent’s interaction with its environment. That is, the interpreter assumes
that the belief base was updated according to agent’s percepts at the beginning
of each deliberation cycle. Jason extends the framework for reasoning about
agent’s beliefs in that it incorporates a Prolog interpreter for the belief base
and also provides a toolbox for implementation of custom belief bases, such as
the topology of environments, or interface to relational databases. Finally, Jason
provides a framework for an implementation of perception handlers and external
events as Java methods, together with an API for implementation of customised
exogenous actions embodying the behaviours of the agent in its implementation.
The customisation interfaces of the Jason interpreter provide means to tailor
the deliberation cycle to the domain specific requirements, as well as to improve
the efficiency of the agent program execution. Our motivation in the presented
experiment was to explore the issues faced in the course of agent program imple-
mentation using the vanilla Jason interpreter. The main requirement underlying
the experiment was to make only minimal customisations of the interpreter re-
quired to make the implemented agents interact with their environment.

3 The case-study

The Cows & Cowboys problem of the Multi-Agent Programming Contest edi-
tions 2009 and 2010 (cf. [4], scenarios for the 2009-10 editions) is a challenging
scenario for cooperative multi-agent teams benchmarking. In the Cows & Cow-
boys scenario, two teams of agents, herders, compete for a shared resource, cows.
The environment is a grid, usually a square with a side approximately 100 cells.
Each cell can be either empty, or can contain an object which can be either a
tree, a fence, an agent, or a cow. Trees serve as obstacles in the environment
and are arranged so that the freely traversable space forms a kind of a maze.
The agents can move between empty cells and can open fences, by standing at
the edge of a fence. Similarly to the agents, cows also roam around through
empty cells, however their movement is controlled by the environment. It takes
into account their mutual distances, as well as distances from the agents and
trees the cow can see. The agents and cows have a limited view, and in each
simulation step receive a perception containing cells in their vicinity. The task
of each agent team is to herd as many cows as possible into a corral belonging
to the team. Because cows are afraid of the agents, they can be pushed by a
coordinated movement of a team of agents.

For purposes of this case-study, we have implemented a fragment of the
Cows & Cowboys scenario. The concrete problem was to implement a team of
agents, which cooperatively explore the maze, find some pre-determined land-
marks and then traverse the maze from one landmark to another while main-
taining a formation of a particular shape.
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Figure1l. The architecture of a single Jason agent interacting with the simulated
environment.
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The simulated environment was provided by the MASSim server [3]. The
architecture of the implemented system is depicted in Figure 1.

During every simulation step the belief base is updated and an action from
the previous timestep is marked as executed, if there was any. Jason thread is
then allowed to continue its deliberation based on new percepts. Subsequently,
the agent’s control thread goes to sleep for 2000 milliseconds (the server sends
new percepts every 2500 milliseconds) unless it is woken up by the Jason thread
upon an invocation of an exogenous action from within an intention of the agent.
Finally, the indicated action to perform is validated by checking whether it
is intended for the current timestep and if found valid, it is sent back to the
server. The only exogenous actions the agent can execute are moves in the eight
directions: north, east, south, west and the diagonal moves north-east, north-west,
south-east and south-west.

The toolbox of internal actions includes most importantly the implementa-
tion of the path planning algorithm A*, together with a few auxiliary functions
such as a lottery-like mechanism for choosing the formation leader, queries for
contents of map cells, etc.

One of the most important decisions for the implementation of the case-study
was that we did not customise the Jason interpreter itself, nor the event plan
intention selection functions Sg, Sp, St.

4 Issues faced

In the following, we discuss a set of problems we encountered in the course of
implementing the case-study described above in Section 3. The programmer in-
volved in the experiment was new to BDI-style agent-oriented programming and
was learning the Jason language along the way. We used the book Program-
ming Multi-Agent Systems in AgentSpeak Using Jason [8] as the authoritative
source and documentation for Jason. For clarity, the discussion of each issue in-
cludes a brief motivation and explanation of the particular design problem, sub-



sequently followed by a discussion on the available solutions, their consequences
and wherever appropriate an informal proposal for an improved solution to the
issue.

4.1 Loop implementation

Quite often a programmer needs to implement some kind of a loop design pat-
tern. In a maze-like environment, the agent calculates a path from point A to
point B using a path planning algorithm and then it follows the path. This pat-
tern could be implemented by the following algorithm in an imperative language:
before—loop—code
while not loop—condition do
loop—body

end
after—loop—code

As of conducting the here reported experiment, Jason did not feature a loop
programming construct per se, but it could be implemented by the following
Jason code:

event: context <—

Ibefore—loop—plan;

lloop;

lafter—loop—plan.
~+!loop: not loop—condition <+

lloop—body;

lloop.

This pattern implements the idea of tail recursion. The interpreter does not
feature a special treatment of tail recursion though. According to the language
semantics, this pattern unfolds into a growing intention stack. At the bottom of
the stack there is the after—loop—plan goal. Above it in the stack, there is a series
of invocations of lleop of a length equal to the number of iterations of the loop.
In order to facilitate correct plan failure handling, Jason interpreter does not
remove the top-level invocation from the intention stack. In the path-following
scenario, if the path is of length 1000, the intention stack would grow to the
size 1000 plus the length of after—loop—plan. Notice that several dozen thousands
path steps are not that unrealistic for large grid environments. In cases with an
extremely high number of loop iterations, the intention stack growth can lead to a
high memory consumption. Perhaps even more importantly, the following clean-
up of the intention stack, may take an undesirably long time. The execution
of after—loop—plan may therefore be heavily delayed. Possibly even missing some
important timing window. This issue is the same as with the depth-first search
algorithm (DFS). There are two main approaches to the DFS implementation:
an exclusive stack and a recursive function call. The exclusive stack solution
requires only the to-be-explored nodes, while the recursive function call solution
requires the activation records of the recursive function to be present on the
program stack as well.

A naive attempt by a novice programmer could be a loop implementation
using the asynchronous goal invocation nioop. A straightforward application is



inappropriate in this context though as besides invoking the loop, it would lead
to an immediate continuation with the after—loop—plan.

We propose the following implementation of the loop design pattern, which
uses higher order variables feature of Jason (cf. [8], Chapter 3) to implement a
kind of a callback scheme:

event: context <—
before—loop—plan;
loop(after—loop—event).
+lafter—loop—event: true < after—loop—plan.
+!loop(Callback): not loop—condition <
loop—body;
loop(Callback).
+!loop(Callback): loop—condition < !!Callback.

The above loop implementation is well-formed and a valid program according
to the Jason syntax and semantics. Instead of a synchronous event invocation,
we invoke the loop in an asynchronous manner !lloop and provide it with an
argument, which is a string denoting the event, which should be invoked after the
loop finishes — in this case after—loop—event. When the loop termination condition
becomes true, the pattern simply invokes the event stored as the callback. The
advantage of this loop implementation is that it does not lead to an intention
stack growth, while at the same time still allows for plan failure handling as in
the standard loop implementation.

In the pattern above, the loop has a callback argument. This callback is
added as a goal upon the loop’s successful termination. An extension of this
callback design solution allows a programmer to introduce a powerful plan failure
handling mechanism as follows:

event: context <—
before—loop—plan;
loop(after—loop—event, fail—loop—event).
+lafter—loop—event: true <+
after—loop—plan.
+!fail—loop—event: true +—
loop—failure—plan.
+!loop(SuccessCallback, FailCallback): not loop—condition & loop—continuation—condition <—
loop—body;
Mloop(SuccessCallback, FailCallback).
+!loop(-, FailCallback): not loop—condition & not loop—continuation—condition <+
IFailCallback.
+!loop(SuccessCallback, _): loop—condition <
ISuccessCallback.

A loop is a handy and a frequently used design pattern in imperative pro-
gramming. However, for a novice programmer, a loop implementation in Jason
is rather unintuitive and it often leads to a confusion. One of the straightforward
solutions, well in the spirit of BDI architecture, would be to use persistent goals,
such as in 3APL. Another way to deal with this would be to implement a built-in
loop programming construct, or a macro pre-processor construction similar to
the various types of goals and commitment strategies discussed in [8], Chapter 8,
or in [17].

To conclude, in the course of writing up and submission process of this paper,
a new version of Jason interpreter was released. In the most recent version of
the interpreter (from ver. 1.3.4 on), Jason includes a loop construct in the form



of two internal actions for (foreach) and while. As a result, this point is no longer a
pressing issue for Jason, yet the more general solution of the problem presented
above might come handy as a standalone pattern.

4.2 Interruptions and intention interactions

Among other desirable properties, intelligent agents are supposed to be able to
follow long term goals, but at the same time should be reactive to events in the
environment and proactively seek opportunities for action whenever they arise in
an appropriate context. Consider the following slight extension of the case-study
scenario. The team of agents is moving through the environment in a formation,
however, agents are also capable of picking up objects, let’s say garbage, from
the cells they stand on. Let’s also assume, an agent perceives the object to pick,
only when it is located in the same cell as the object and it can pick up an
object only after it closely inspected it. In Jason, a straightforward and naive
implementation of the two behaviours would look like as follows:

+!formation_loop : not aligned <
/# calculate the move action towards formation position s/
move;
Iformation_loop.
+see(Object) : true <+
inspect(Object);
pick(Object).

The above naive implementation does not work properly using the vanilla
Jason interpreter. The reason is that after the new intention leading to picking up
the object from the cell is formed, it is not ensured that in the same deliberation
cycle, the intention selection function Sz selects the same intention for execution.
In the case Sz selects for execution first the intention for keeping the formation
aligned, it can happen that at the moment the agent wants to inspect, or pick
up the object, the plan fails since the agent is no more located in the same cell
as the object — the plan for keeping the formation aligned moved it away.

The implementation problem described above is that of interacting intentions
(run-time plans) that can mutually interrupt each other. In Jason, similarly to
most state-of-the-art BDI-based agent programming languages, intentions are
implicitly considered interruptible. However, having several intentions involved
in the same context, i.e., modifying the same aspect of agent’s state, which can
be instantiated as intentions in parallel, the problem is how to determine the
priority of execution of the corresponding intentions? Below, we discuss several
different solutions to this problem.

A straightforward approach would be to use some kind of plan synchronisa-
tion mechanism. Jason provides atomic, a pre-defined plan annotation construct
ensuring that the intention instantiated from an atomic plan is executed without
interruption until it finishes. The following code presents the use of this con-
struct:

Qobject_picking[atomic]

+see(Object) : true «+—

inspect(Object);
pick(Object).



While simple and straightforward, this solution of the plan interaction does
not scale with the number of involved interacting intentions. Consider that our
agent should be able to quickly renegotiate the details of formation location and
its heading with the team. While interdependent with the formation alignment
behaviour, it is independent to the object picking behaviour. In result, we would
like to impose the following ordering on the three behaviours: the formation
alignment behaviour is preceded by the opportunistic object picking, which is
in turn preceded by the negotiation. However, the atomic construct applied to
the object picking behaviour would cause it to be non-interruptible, hence the
negotiation could not take place.

Another possibility to deal with interacting intentions would be to let the
program handle the situations, in which they can be interrupted, not the inten-
tions themselves. L.e., all plans would be considered implicitly non-interruptible
and at every point in which an intention can be interrupted by a higher-priority
event, there would be an explicit check for all possibilities of such interruptions,
followed by a synchronous invocation of the interrupting event and an expli-
cit check for preconditions of the remaining plan. The following code snippet
demonstrates a usage of such a technique:

+!formation_alignment : context «—

align—plan—start;
Ipick_object; !negotiation;
align—plan—rest.
+!pick-object : see(Object) +—
pick—plan—start;
Inegotation;
pick—plan—rest.

+!negotiation: request(Sender, Msg)
negotiation—plan.

Obviously, this technique leads to implementation of agent behaviours in terms
of finite state machines and consequently to brittle, non-elaboration-tolerant,
code. In order to add a new behaviour, interactions with all the other existing
behaviours have to be considered and these have to be modified accordingly.
An alternative solution supported by the Jason interpreter is to employ
suspend and .resume internal functions which facilitate suspension and resuming
of intentions respectively. The previous example could then be reformulated as
follows:
+!formation_alignment : context «—
align—plan.
+!pick_object : see(Object) <
.suspend(formation_alignment);
pick—plan;
.resume(formation_alignment).
+!negotiation: request(Sender, Msg) <
.suspend(pick_object); suspend(formation_alignment);
negotiation—plan;
.resume(pick-object); .resume(formation_alignment).

The presented code should be considered in comparison with the previous ex-
ample which involved explicit invocation of the possible higher-priority inter-
ruptions. In this case, the approach is to rather let the lower-priority plans to
proceed freely, while the higher-priority behaviours should care for suspending



and resuming the possibly running lower-priority plans. Clearly, both solutions
suffer from the same problems and lead to brittle code in which plans for various
independent behaviours have to be informed and have to depend on each other
for the program to execute correctly.

The only scalable and flexible mechanism for the problem of interacting plans
is customization of the intention selection function Sz. The modified function
would prioritise the intentions appropriately according to the particular applica-
tion domain. The downside of this, rather heavyweight, solution is that it renders
the resulting Jason program to be not unambiguously readable and understand-
able in isolation. An important part of the program semantics is this way shifted
to the Java side and the Jason program cannot be fully comprehended without
understanding the Java code functionality.

Finally, in [8] authors discuss the plan annotation priority reserved for future
use. The annotation is intended to instruct the plan selection and intention
selection functions Sp and Sz about the plan and intention selection priority
respectively. They also note that the mechanism is not implemented in Jason
programming system yet and do not provide enough technical detail on its func-
tionality.

Above, we tried to show that the problem of steering plan interactions and
interruptions is an important one, yet not solved appropriately in the current
incarnation of Jason. On one hand, an intuitive and clean mechanism for inten-
tion interaction is vital in BDI-style agent programming, where several intentions
might be running in parallel and interleave their executions. On the other, in-
tentions can interact in many different ways. To strike balance between the two
requirements, as an informal attempt, we suggest a conservative extension of
Jason allowing to impose partial ordering of plans and intentions in a program.
While certainly not a mechanism general enough (consider e.g., a specification
of the priorities of the program modules, similar to the one proposed in [15]),
such a mechanism, would help to avoid customisation of the intention selection
function Sz, which we consider a bad design practice for the reasons discussed
above.

4.3 Mental notes and plan destructors

Mental notes are beliefs added to an agent’s belief base from inside its intention.
This way the agent can remind itself about status of its own execution and
partially solve the problem of intention interactions discussed in the previous
section. The main reason to employ mental notes is to provide a way to transfer
complex information between two behaviours, usually between a behaviour and
its invoked subgoals. As a result, the mental notes can be used as a kind of
local variables of plans. The belief base may have to be cleaned up upon an
intention completion by retracting these “local variables” corresponding to the
intention. If implemented carefully, Jason provides a means to implement such
a mechanism. Consider the following code:

+levent: context <—
+event(notel);



~+event(note2);
.abolish(event(-)).

Each mental note local to the intention triggered by the event event is of a
particular form, allowing a bulk retract of all the beliefs of one argument and
name event using the internal action .abolish.

While relatively straightforward, this technique can lead to difficulties in the
case of an intention failure. The involved problems are quite similar to those
involved in handling run-time exceptions in imperative programming languages.
Upon an intention failure, the local mental notes have to be cleaned up as well.
A variation of the following can be used to achieve that:

—levent: context <«
.abolish(event(.)).

Besides code duplication, a naive Jason programmer can simply forget to
implement the appropriate failure plan. Another issue of this technique is that
it might be necessary to use a different mental note forms for alternative plans
handling the event event. However, upon an intention failure it is no longer possible
to recognise, which particular intention, has failed.

We informally propose a language extension similar to the exception handling
programming construct try—catch—finally present in many imperative languages, as
well as in some niche agent programming languages, such as StorySpeak [12].
Consider the following code snippet:

+levent: context <«

try {
plan—body;
} finally {
.abolish(event(_));
}.

The code in the finally block should include a plan destructor, a subplan which
should be invoked upon the plan termination, regardless of its success, or a
failure. The advantage of this construct is that the plan destructor is associated
with the particular plan variant handling event +levent, unlike the standard Jason
plan failure event —tlevent. Obviously the syntax of the proposed extension is is not
in line with the declarative spirit of AgentSpeak(L) and Jason, but it illustrates
the point well.

4.4 Jason agents vs. external environment

In the implemented case-study, agents had a time limit imposed on their delib-
eration. They had 2500ms to choose their next action. If the action is not chosen
within this timeframe, the simulated environment continues as if the agent ex-
ecuted the action skip and discards any action reply delivered after the timeout.
In such environments, it is vital for an agent programmer, to optimise and speed
up the agent’s deliberation as much as possible. However, speeding up the delib-
eration itself is often not enough. The agent may then have to restart a whole



intention (or just a single instantiated plan) to take new state of the environment
into account.

In the implemented case-study, it was necessary for agents to reason about
complex aspects of the environment, such as relative positions of teammates
in a formation. In order to speed up the deliberation of the agent, we have
implemented a relatively complex mechanism of belief updating. Upon each belief
update, an agent triggers an event for a plan pre-calculating answers to often-
queried context conditions and storing them as mental notes in his belief base.
While speeding up the execution, this mechanism led to relatively complex belief
base handling within the agent. However, even with this optimisation, the agents
were sometimes not able to reply to the server within the set time limit in some
situations.

To solve the problem of a prolonged deliberation, we propose two extensions
of the Jason programming system. Prolonged reasoning over the agent’s beliefs is
often invoked from the rule context conditions (deliberation over complex aspects
of the environment, such as the form of obstacles ahead, path calculation, etc.).
In order to speed up such Prolog query evaluations, we propose to implement a
RETE-style mechanism [11] for context conditions which can be calculated once
and then treated as constant queries for the rest of the deliberation cycle.

To deal with the intention restart problem, Jason provides constructs for
explicit management of the intention base. Current implementation of the Jason
programming system provides the internal action .drop.intention facilitating forceful
intention cancellation from within a plan of the agent. The straightforward use
of this mechanism is however not well suited for the case-study application. It
would require implementation of a recurring goal, a loop like pattern, regularly
checking whether the timeout already passed, or not. Another option would be
to add the timestep mechanism handling to the environment implementation,
annotate the relevant plans with a particular name pattern and finally enhance
the agent program with a plan similar to the following one:

+timestep: true <
.drop_intention(...);
/* possibly restart some of the intentions /.

Usage of design solutions such as the two introduced in the previous para-
graph, however, would interact with other plans as discussed in Subsection 4.2
and would be difficult without an appropriate customisation of the intention se-
lection function. Secondly, and perhaps more importantly in the case of the first
solution, regularly checking the timeout could lead to further slow-down of the
deliberation cycle.

We propose an extension of the Jason annotation mechanism allowing an-
notation of the agent’s intentions with timestamps. At the point when the
system timestamp value is incremented, either by the agent program itself, or
from within the underlying Java code, all the intentions annotated with a lower
timestamp should automatically fail as they become irrelevant.

To conclude this part, let’s consider interaction between the Jason interpreter
and an external environment in general. In its current incarnation, Jason is
rather introverted, as are many other agent-oriented programming languages. In



particular, the programming system implicitly assumes that the agent acts in
a synchronous manner with respect to the environment. This assumption holds
when the speed of the agent’s deliberation is higher, or at least matching the rate
of change, the update frequency, of the environment. However, in cases where the
agent deliberation struggles to match the frequency imposed by the environment,
the current implementation of the Jason programming system does not provide
enough optimisation mechanisms to deal with the issue (in [13], we discuss some
possibilities dealing with this problem in the context of videogame bots).

4.5 Jason vs. Java

Jason programming system is tightly integrated with the underlying Java envir-
onment. This setup allows interfacing the implemented agents with their envir-
onments in a very flexible way. It also facilitates extensive customisation of the
language interpreter for the particular application domain. Jason allows for cus-
tom belief bases, as well as adaptation of the event, plan and intention selection
functions Sg, Sp and Sz respectively.

We argue, that the flexibility of this setup might also be a drawback. The
reason is that such extensive customisations may lead to a fuzzy boundary
between Java and Jason parts of the implemented agent program. Significant
and important parts of the agent program functionality are often implemented
in Java code, but this approach tends to render the Jason (AgentSpeak(L))
program difficult to understand in isolation.

In this context, a point especially relevant for novice Jason programmers, is
the question what are the guidelines regarding which aspects of the agent program
should be implemented in Java and which in Jason? In an extreme case, one
could consider a trivial Jason program of the following form:

Imain.

+!main: true < .main.

There is a single event invoked at the start of the program, which leads to an
invocation of an internal action main implementing the whole functionality of
the agent as a Java code. In contrast to this approach, we may have the A*
search algorithm implemented exclusively in Jason. While both of these Jason
programs are absurd, they illustrate the point.

The ability to shift pieces of functionality between Java and Jason, and at
the same time not having clear guidelines regarding what belongs where, leads to
confusion of inexperienced Jason programmers. Bordini, Hiibner and Wooldridge
briefly mention this issue in [8], Chapter 11. They seem to take a puristic stance,
since they argue that programmers should resist the temptation to enhance en-
vironments with “fake” actions and other user customisations leading to “cheat-
ing” in Jason programming. While this point is fair, the pragmatic use of the
Jason language by a relatively inexperienced programmer facing design issues
such as those discussed above in this section might lead to a growing frustration
and finally a solution through the path of “minimal effort”. The programmer
might simply revert to a more familiar tool, in this case the Java programming
language.



A similar issue has been addressed by J. J. Bryson in the context of the POSH
reactive planner [10]. She proposes a methodology for a behavioural design,
which, besides other things, states explicitly, which parts of behavioural code
belong to underlying Java (or Python) and which to POSH.

4.6 Minor technical and methodological issues

Finally, let us conclude the core discourse by listing some minor technical issues
a programmer learning the Jason programming system encounters. While of
relatively low importance, improvement on these fronts could have an impact on
overall usability of the Jason programming system.

Debugging Debugging BDI agent systems is a topic often discussed within
the community. Apart from deeper discussion on particular debugging methods,
one of the issues are the appropriate tools available for the particular program-
ming platform. Jason provides a tool for stepping through the agent’s reasoning
cycle, display its current belief base, the pursued intentions and events awaiting
evaluation. Apart from problems with stability of the tool, one of the main diffi-
culties with this style of program debugging is that in situations with relatively
short time limit on agent’s deliberation, this approach is inapplicable. A more
appropriate technique in such situations is to use a logging facility.

In Jason ver. 1.3.3, which has been used for this study, the provided logger
does not expose enough information to the programmer. It is not comprehensible
enough, as, apart from user defined outputs, it only reports selected events and
plans, percepts and execution control messages. It would be useful to dump/ex-
port the whole current state of the agent when needed. Additionally, the user
should be allowed to specify different levels of detail for logging (even dynamic-
ally during the execution), as output of whole states could be sometimes space
intensive.

Integrated Development Environment Even though the provided Eclipse
plug-in is reasonably comfortable, it does not follow some of the established
patterns for plug-ins of the same category for Eclipse IDE. Instead of adding
program run options directly to the project options menu, it has them attached
to the context menu of a mas2j file. An ordinary FEclipse plug-in would try and
replicate the selection of main class of Java program, which has essentially the
same objectives.

Another minor issue is the lack of code completion function in the standard
Jason IDE, which rather slows down agent program implementation.

Educational material One of the most difficult aspects of programming in
Jason was actually learning it. There is only a limited material freely avail-
able. Thus, along with generated documentation for the source code (javadoc),



examples and demos, the most useful resource is the book “Programming Multi-
Agent Systems in AgentSpeak Using Jason” [8]. While the book provides a com-
plete description of the programming system itself, it is still relatively difficult
to use as a pedagogical tool. It imposes a strong emphasis on the theoretical
part of Jason, without introducing the student into pragmatics of building more
complex agent systems first. To improve the situation, we would appreciate sev-
eral authoritative tutorials on incremental building of complex agent systems
teaching the correct techniques of programming in Jason. As of now, the initial
barrier between first working plans and first complex interacting plans is tre-
mendous and requires a lot of trial and error approach on the side of the novice
Jason programmer. In our opinion, the hurdle is much greater than those of
other, especially imperative, languages such as Java, C++ or Python.

5 Final remarks

In the above sections, we discussed some of the most problematic issues we
have faced during the experiment. In particular, the experiment aimed at an
implementation of a relatively complex case-study application by a programmer
without a prior knowledge of Jason language. To keep the experience as relev-
ant to Jason-style agent programming as possible, one of the goals was to try
to use Jason programming system as is, with as few customisations as possible.
In particular, we decided not to customise the deliberation cycle of the Jason
interpreter and to limit the code written in Java. The features implemented in
a form of a Java code were those facilitating the interaction with the simu-
lated environment, such as a set of internal actions implementing path planning
algorithms.

Since we have used the Cows & Cowboys simulated environment for the Multi-
Agent Programming Contest (AgentContest), the complexity of the implemented
case-study is directly comparable to the implementations of AgentContest entries
in its last few editions. For comparison, our implementation resulted in a code-
base involving 1127 lines of code, while the AgentContest entries to editions 2009
and 2010, presented by teams involving the Jason platform developers, included
1416 and 1648 lines of code respectively. The AgentContest entries, however,
aimed at the full-featured cows herding scenario, while our case-study imple-
mented only a fragment of the scenario, environment exploration and movement
in a formation through the environment. The independent entry to the 2010
edition of the AgentContest by the team of the Technical University of Denmark
featured only 173 lines of Jason code and most of the team functionality was
thus implemented on Java side. If our assumption that the AgentContest entries
are the largest publicly available applications written to date is correct, then our
case-study resulted in one of the most extensive Jason codebases to date.

In parallel to creating the here reported Jason implementation, several stu-
dents implemented the same case-study application in Javae in the context of
Multi-Agent Systems course at CTU in Prague. Interestingly, while most of
them considered the task quite work-intensive and reported a workload in range



of 40-60 hours of programming and testing to complete the undertaking, the
Jason implementation took more than 100 hours to complete for an experienced
Java programmer. The average Java codebase resulting from the exercise in-
volved more than 4000 lines of code. While no hard conclusion can be drawn
from this remark, it can serve as an indicator that learning Jason on a non-trivial
example application is definitely a difficult task and that the community should
invest more effort into educational material such as more extensive tutorials on
teaching of agent-oriented programming.

The discussion in this paper does not aim at providing a significant scientific
contribution. However, we believe that reports, such as this, contribute to the
on-going discussion in the community on usefulness, relevance and pragmatics
of agent-oriented programming systems, tools and languages, as well as to the
future developments of the field. We would like to emphasize that the issues
discussed in this paper are those we found to be important while developing a
concrete experimental case-study. The conclusions drawn here, even if generic
as they are, should be considered with caution in the context of the particular
application domain. To study the subject in a more depth and more rigorously,
further studies on larger groups of test subjects should take place and should
also consider some established methodologies like Agent-Oriented Software FEn-
gineering.
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